引用本文: 解盘石, 杨航, 伍永平, 等 . 基于数字孪生的倾斜采场装备力学行为测控研究[J]. 煤炭科学技术 , 2024, 52(12): 259-271. XIE Panshi, YANG Hang, WU Yongping. Investigation into the monitoring and control of mechanical dynamics in inclined mining equipment utilizing digital twin technology[J]. Coal Science and Technology, 2024, 52(12): 259-271.
便携式低场MRI(LF-MRI)的出现,预示着神经影像学的新机会。低功率要求和可运输能力已使传统MRI套件的受控环境之外进行扫描,从而增强了对不适合现有技术的指示的神经影像的访问。最大化从LF-MRI的信噪比降低的信息中提取的信息对于开发临床上有用的诊断图像至关重要。电磁噪声消除和机器学习重建算法的进展来自稀疏K空间数据以及图像增强的新方法,现在已经实现了这些进步。耦合技术创新与床边成像为可视化健康的大脑并检测急性和慢性病理变化时创造了新的前景。正在进行的硬件的开发,脉冲序列和图像重建的改进以及临床实用程序的验证将继续加速该领域。随着进一步的创新发生,便携式LF-MRI将促进MRI的民主化,并创建以前不可能使用常规系统可行的新应用。
便携式低场磁共振成像 (LF-MRI) 的出现预示着神经成像的新机遇。低功耗要求和便携性使得扫描可以在传统磁共振成像套件的受控环境之外进行,从而增强了对现有技术不太适合的适应症的神经成像的访问。最大限度地利用从 LF-MRI 降低的信噪比中提取的信息对于开发临床有用的诊断图像至关重要。电磁噪声消除和稀疏 k 空间数据的机器学习重建算法的进展以及新的图像增强方法现已促成这些进步。将技术创新与床边成像相结合,为可视化健康大脑和检测急性和慢性病理变化创造了新的前景。硬件的持续开发、脉冲序列和图像重建的改进以及临床实用性的验证将继续加速这一领域的发展。随着进一步的创新,便携式 LF-MRI 将促进 MRI 的民主化并创造传统系统以前无法实现的新应用。
[20] Liu W W,Chen S Q,Li Z C等。使用单层跨表面[J]在Terahertz区域中在Terahertz区域中传输模式下的极化转换实现。光学信,2015,40(13):3185-3188。
摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
脑萎缩和白质超强度(WMH)与诸如中风或多发性硬化症之类的疾病密切相关。自动分割和定量是可取的,但是现有的方法需要具有良好信噪比(SNR)的高分辨率MRI。这排除了对临床和低场便携式MRI(PMRI)扫描的应用,从而阻碍了萎缩和WMH进展的大规模跟踪,尤其是在PMRI具有巨大潜力的欠佳地区。在这里,我们提出了一种方法,该方法将白质高强度和36个大脑区域从任何分辨率和对比度(包括PMRI)的扫描中分离出来,而无需重新训练。我们在六个公共数据集以及具有配对的高场扫描(3T和64MT)的私人数据集上显示了结果,在此估计的WMH(ρ= .85)和海马体积(ρ= .89)之间,我们达到了较强的相关性。我们的方法是作为Freesurfer的一部分公开使用的,网址为:http://surfer.nmr.mgh.harvard.edu/fswiki/wmh-synthseg。
低场磁共振成像(MRI)最近经历了文艺复兴,这在很大程度上归因于MRI中众多的技术功能,包括优化的脉冲序列,并行接收和压缩感应,改进的校准和重建算法以及用于图像后处理的机器学习的采用。对低场MRI的新注意力源于缺乏对传统MRI的访问以及对负担得起的成像的需求。低场MRI提供了可行的选择,因为它缺乏依赖射频屏蔽房,昂贵的液态氦气和低温淬火管道。此外,其尺寸和重量相对较小,可以在大多数设置中轻松且负担得起的安装。而不是取代常规MRI,低场MRI将为发展中国家和开发国家的成像提供新的机会。本文讨论了低场MRI,低场MRI硬件和软件的历史,市场上的当前设备,优势和缺点以及低场MRI的全球潜力。
摘要:金属纳米结构对光学激发的响应导致局部表面等离子体(LSP)生成,并在例如量子光学和纳米光子学中驱动纳米级场限制驱动应用。Terahertz域中的现场采样对追踪此类集体激发的能力产生了巨大影响。在这里,我们扩展了此类功能,并在更相关的Petahertz域中对LSP进行直接采样。该方法允许以亚周期精度测量任意纳米结构中的LSP场。我们演示了胶体纳米颗粒的技术,并将结果与有限差分的时间域计算进行了比较,这表明可以解决等离子体激发的堆积和逐步化。此外,我们观察到了几个周期脉冲的光谱阶段的重塑,并通过调整等离激元样品来证明临时脉冲成型。该方法可以扩展到单个纳米系统,并应用于探索亚周期现象。关键字:等离激光,等离子体动力学,金纳米颗粒,Petahertz现场采样■简介
结果 50 名患者(16 名女性 [32%];平均 [SD] 年龄为 59 [12] 岁 [范围,20-89 岁])接受了即时 MRI 检查。患者表现为缺血性卒中(n = 9)、出血性卒中(n = 12)、蛛网膜下腔出血(n = 2)、创伤性脑损伤(n = 3)、脑肿瘤(n = 4)和伴有精神状态改变的 COVID-19(n = 20)。检查时间为重症监护病房入院后中位数 5 天(范围,0-37 天)。分别对 37、48、45 和 32 名患者进行了诊断级 T1 加权、T2 加权、T2 液体衰减反转恢复和扩散加权成像序列。 30 名未感染 COVID-19 的患者中有 29 名(97%)检测到神经影像学异常,20 名感染 COVID-19 的患者中有 8 名(40%)出现异常。在重症监护室部署便携式 MRI 或扫描期间没有出现不良事件或并发症。
超材料是一种自然界中不存在的人造介质。 p 由小块金属、电介质等组成的单位元素。 p 与波长相比,以足够小的间隔排列 p 电学和磁学性质与原始物质/材料不同