我们研究一个真实的小型开放经济体,它有两个关键因素:(1)国内外债券市场的部分分割;(2)货币外部性导致实际汇率在资本流动的影响下过度波动。部分分割意味着,通过干预债券市场,央行可以影响汇率以及国内外债券收益率之间的利差。此类干预使央行能够解决货币外部性问题,但成本也很高,因为外国人可以通过套利交易获利。我们分析了解决这种权衡的最佳干预政策:(1)最佳政策逆风而行,稳定汇率;(2)它涉及平滑的利差,但允许汇率跳跃;(3)它部分依赖于“前瞻性指引”,即使在冲击消退后也会进行非零干预;(4)它需要可信度,因为央行不会在没有承诺的情况下进行干预。最后,我们利用模型的多国扩展,阐明了大规模干预对全球造成的后果。我们发现,如果任其发展,各国会过度积累储备,从而降低福利,并导致全球利率低得无效率。
阻塞性睡眠呼吸暂停 (OSA) 是一种常见的睡眠障碍,其患病率在中国呈上升趋势,且与肥胖趋势一致。OSA 是一种异质性疾病,取决于解剖学和非解剖学危险因素。种族对这些 OSA 危险因素的归因有不同的影响。中国患者的颅面骨性受限更多,白种人更肥胖。这表明诊断和治疗的潜在应用存在种族差异。然而,目前治疗 OSA 的策略是基于呼吸暂停低通气指数 (AHI) 的千篇一律的方法。虽然持续气道正压通气 (CPAP) 仍然是 OSA 的一线和最有效的治疗方法,但在中国其接受度低得令人无法接受。因此,需要开发治疗 OSA 的靶向疗法。本综述总结了中国患者 OSA 发病机制的差异,并分析了中国 OSA 患者个性化医疗的现状。个性化医疗在中国人群中应用于 OSA 治疗仍任重道远。© 2021 Elsevier BV 保留所有权利。
从我们醒来的那一刻到我们结束一天的那一刻,我们都在使用由书面文字构建的界面。几个世纪以来,文本信息仍然是人类信息获取的基石。智能手机、平板电脑、电子阅读器和个人电脑的广泛普及,已将大部分阅读从僵硬的纸张转移到数字内容。在过去 15 年中,我们通过数字阅读获取的信息量迅速增长,并且还在继续增长。与此同时,美国的识字率却低得惊人:1.3 亿 16 至 74 岁的美国成年人(占总人口的 54%)的阅读水平低于六年级(Rothwell,2020 年)。令人震惊的是,根据美国国家教育统计中心 2022 年的一份报告,幼儿阅读成绩出现了自 1990 年以来的最大降幅(美国教育部,2022 年)。此外,阅读障碍是最常见的语言学习障碍,影响着 15-20% 的人口,占所有学习障碍患者的 80-90%(国际阅读障碍协会,2022 年;耶鲁阅读障碍与创造力中心,2022 年)。正如我们在此所述,可读性研究从根本上针对每个读者的需求采取了个性化的方法。每个读者,即使是那些可能没有困难的读者,都有自己的阅读障碍。
尽管分子表示学习最近取得了进展,但其有效性还是在近世界的假设上假定的,即训练和测试图来自相同的分布。开放世界测试数据集通常与分布(OOD)样本混合在一起,在该样本中,部署的模型将难以做出准确的预测。在药物筛查或设计中分子特性的误导性估计会导致湿lab资源的大量浪费并延迟发现新疗法的发现。传统检测方法需要对OOD检测和分布(ID)分类性能进行贸易,因为它们共享相同的表示模型。在这项工作中,我们建议通过采用基于辅助扩散模型的框架来解析OOD分子,该框架比较了输入分子和重建图之间的相似性。由于产生构建ID训练样品的产生偏见,OOD分子的相似性得分将要低得多以促进检测。尽管在概念上很简单,但将此香草框架扩展到实际检测应用程序仍然受到两个重大挑战的限制。首先,基于欧几里得距离的流行相似性指标无法考虑复杂的图形结构。第二,涉及迭代脱氧步骤的属性模型众所周知,尤其是在大量药物库上运行时。为了应对这些挑战,我们的研究先驱者是一种旋转型G raph r生态建构的方法,该方法被称为pgr-mood。具体来说,PGR-MOOD取决于三个创新:i)一个有效的指标,可根据离散的边缘和连续节点特征全面量化输入和重建分子的匹配程度; ii)构建
背景:高级别胶质瘤是原发性脑癌,过去 40 年来,尽管进行了手术切除和破坏 DNA 的化放疗,但世界卫生组织 4 级胶质瘤的生存率仍然低得令人无法接受,且持续为 10-16 个月。最近,肿瘤治疗场疗法 (TTFields) 已显示出适度的生存益处,并在多个国家获得临床批准。TTFields 人们认为主要通过破坏有丝分裂来介导抗癌活性。然而,最近的数据表明,TTFields 也可能减弱 DNA 损伤修复和复制叉动力学,为结合标准治疗方法和靶向 DNA 损伤反应抑制剂 (DDRi) 的治疗组合提供了潜在的平台。方法:我们将患者来源的、通常具有抗性的胶质瘤干细胞样细胞 (GSC) 与之前验证的临床前 Inovitro™ TTFields 系统以及多种治疗性 DDRi 结合使用。结果:我们发现 TTFields 可强效激活 PARP 和 ATR 介导的 DNA 修复(包括 PARylation 和 CHK1 磷酸化),而将 TTFields 与 PARP1 或 ATR 抑制剂治疗相结合可显著降低克隆形成存活率。放射治疗进一步增强了这些策略的效力,导致 DNA 损伤量增加,DNA 损伤消退时间大大延迟。结论:据我们所知,我们的研究结果是首次在 GSC 模型中将 TTFields 与临床批准或试验中的 DDRi 结合使用,并为针对目前无法治愈的肿瘤患者的多模式 DDRi/TTFields 治疗策略的转化研究提供了基础。
20 世纪 60 年代末,电子发动机控制装置开始出现在汽车领域。我记得最早的一种是博世开发的全模拟燃油喷射计算机 (D-Jetronic™),它用于 4 型大众汽车。当时,我在普惠研究实验室工作,致力于涡轮发动机电子控制系统的开发。博世的 Jetronic 系统为该项目的部分研发奠定了基础。从那时起,数字技术取得了巨大的进步,而以前的数字计算机需要占用很大的空间,需要巨大的室外冷却塔,并且是会计师的专属领域。当今设备中令人惊叹的技术(功耗和尺寸大幅降低;速度、计算能力、可靠性和环境耐受性大幅提升)已经使全权限数字发动机控制器 (FADEC) 成为商用和军用航空中的常见设备。在政府减少发动机排放的要求的推动下,控制技术传播到了汽车领域,以至于大多数应用(汽车、卡车、机车、拖船等)中的当代活塞发动机至少有一台专用数字计算机(又称 ECU 或发动机控制单元)完全控制燃料输送和点火事件,从而产生机械燃料和点火系统无法想象的效率、排放、灵活性和平稳性。事实上,当代压燃(“柴油”)发动机现在的排放量低得令人难以想象,同时产生赢得比赛的动力和比火花点火发动机更高的效率。勒芒获胜的奥迪和标致柴油发动机(每升 140 bhp,转速为 5000 rpm)的性能是由数字控制的燃油喷射系统实现的,该系统在 30,000 psi 附近(即三万)运行,并且每个燃烧循环可以有多达五次单独的喷射事件。因此,毫无疑问,活塞发动机的计算机控制是一项值得期待的进步,对民航业来说可能非常有吸引力。民航业认证的几家主要公司已经生产了不同级别的数字控制装置。
量子电路优化对于提高量子计算的实用性和效率至关重要。特别是,为了满足量子电路急需的紧凑性,可逆电路的合成正在被深入研究。由于 T 门具有较高的容错实现成本 [1],因此人们投入了大量工作来最小化 T 数量 [2–9] 和 T 深度 [10–13]。相比之下,CNOT 门的实现成本较低,因为它是 Clifferd 群的一部分 [14]。尽管如此,基于 T 门的度量的使用有局限性,事实证明,电路中 CNOT 门的数量是一个不容忽视的度量,因为它会对电路的实现成本产生重大影响 [15]。除此之外,噪声中尺度量子 (NISQ) 时代的量子计算机 [16] 具有架构限制。具体而言,这些计算机中的量子比特并非以全对全的方式连接。这意味着具有 2 的元数的逻辑门(例如 CNOT 门)只能应用于某些量子比特对之间。因此,使电路符合给定架构不可避免地会导致 CNOT 计数增加 [17]。处理架构约束的一种常见方法是插入 SWAP 门来路由逻辑量子比特 [18–21]。另一种方法是执行架构感知合成 [22],这种方法通常会产生具有低得多的 CNOT 计数的电路,同时满足架构约束。这种方法通常应用于可以用高级构造(例如线性可逆函数)表示的电路子集。然后可以将这些电路组合在一起以形成完整的架构兼容量子电路 [23, 24]。此编译方案中的一个重要构建块是合成仅由 CNOT 和 RZ 门组成的电路。这些电路可以用称为相位多项式的高级构造来表示。在这项工作中,我们解决了相位多项式合成问题,并针对受限和完全连接的情况提出了有效的算法。
薄膜沉积、微米级图案化以及制造低应力薄膜的能力相结合,构成了表面微机械结构,其特征具有柔顺性,并且彼此或与基板紧密贴合。如果一个柔顺特征与相邻特征或基板接触,则表面之间可能会发生永久粘附。这可能发生在两个不同的时间。首先,当结构在牺牲释放蚀刻后干燥时,相邻表面毛细管状空间中截留的液体弯月面减少产生的表面张力可以将特征拉向彼此或基板 1, 2。强粘附力(在微力学中称为粘滞力)可能导致设备永久粘附,从而导致设备干燥后产量低得令人无法接受。表面也可能相互接触并在稍后的时间(例如在设备运行期间)保持粘连,从而导致可靠性故障。这两种故障中的后者可能成本更高。已经提出了各种机制来解释粘连的原因 1-6 。据报道,从冲洗液中沉淀出来的固体杂质会粘附两个表面,这是原因 1, 2 。结果表明,疏水设备之间的粘连的主要方式是通过范德华力,而范德华力和氢键都是造成亲水表面粘连的原因 3 。其他研究表明,多晶硅表面的吸附水是造成粘连的原因 4, 5 。静电吸引力也被认为是造成粘滞的原因 6 。有关粘滞力的综述,请参阅参考文献 2 和 3。已经做了大量工作来解决表面微机械结构中的粘滞故障 7-25 。除了保持无杂质的释放和冲洗工艺外,还应用了许多技术来提高产量和长期可靠性。冷冻升华是一种常用的提高产量的技术 7-11 。使用这种方法,将设备浸入溶剂(或溶剂混合物)中,然后冷冻。通过升华固化的溶剂(或溶剂混合物),可以避免液-气界面。Guckel 等人首次使用 MeOH 和 H 2 O 混合物进行冷冻升华来干燥微机械部件。7 。环己烷 8、9、叔丁醇 10 和对二氯苯 11 等溶剂也已升华以干燥设备。其他提高产量的技术包括使用光刻胶 12 或二乙烯基苯 13
摘要背景:卵巢癌最初对一线化疗有反应。不幸的是,它经常复发并对现有疗法产生耐药性,晚期和复发性卵巢癌的存活率低得令人无法接受。因此,我们假设通过将顺铂化疗与 SW IV-134(一种针对癌症的肽模拟物和细胞死亡诱导剂)相结合,有可能实现更持久的治疗反应。SW IV-134 是一种最近开发的小分子缀合物,将 sigma-2 配体与内在死亡途径激活剂 SMAC(第二线粒体胱天蛋白酶激活剂)的肽类似物(模拟物)连接起来。sigma-2 受体在卵巢癌中过度表达,缀合物的 sigma-2 配体部分促进癌症选择性。缀合物的效应部分有望与顺铂化疗产生协同作用,癌症选择性有望降低假定的脱靶毒性。方法:卵巢癌细胞系分别用顺铂、SW IV-134 和顺铂联合治疗。使用发光细胞活力测定法确定治疗效果。测量 Caspase-3/7、-8 和 -9 活性作为死亡途径激活的补充指标。研究了人类卵巢癌的同基因小鼠模型和患者来源的异种移植 (PDX) 模型对 SW IV-134 和顺铂单药治疗以及联合治疗的反应。以肿瘤生长率和存活率为主要指标来衡量治疗效果。在尸检时评估潜在的药物相关毒性。结果:与体外单一药物相比,联合治疗在多种细胞系中始终优于单一药物。使用发光和基于流式细胞术的检测系统确认了肿瘤细胞死亡的预期机制,例如 caspase 激活。联合治疗在卵巢癌的同基因和基于 PDX 的小鼠模型中均被证明具有优越性。最值得注意的是,在患者来源的卵巢癌异种移植模型中,联合治疗使所有研究动物的已建立肿瘤完全消退。结论:SW IV-134 与顺铂化疗联合使用是一种有前途的治疗选择,值得进一步进行临床前开发和评估,作为晚期卵巢癌女性的治疗方法。关键词:Sigma-2 受体、Sigma-2/SMAC 药物偶联物、顺铂、联合治疗、卵巢癌
摘要背景:卵巢癌最初对一线化疗有反应。不幸的是,它经常复发并对现有疗法产生耐药性,晚期和复发性卵巢癌的存活率低得令人无法接受。因此,我们假设通过将顺铂化疗与 SW IV-134(一种针对癌症的肽模拟物和细胞死亡诱导剂)相结合,有可能实现更持久的治疗反应。SW IV-134 是一种最近开发的小分子缀合物,将 sigma-2 配体与内在死亡途径激活剂 SMAC(第二线粒体胱天蛋白酶激活剂)的肽类似物(模拟物)连接起来。sigma-2 受体在卵巢癌中过度表达,缀合物的 sigma-2 配体部分促进癌症选择性。缀合物的效应部分有望与顺铂化疗产生协同作用,癌症选择性有望降低假定的脱靶毒性。方法:卵巢癌细胞系分别用顺铂、SW IV-134 和顺铂联合治疗。使用发光细胞活力测定法确定治疗效果。测量 Caspase-3/7、-8 和 -9 活性作为死亡途径激活的补充指标。研究了人类卵巢癌的同基因小鼠模型和患者来源的异种移植 (PDX) 模型对 SW IV-134 和顺铂单药治疗以及联合治疗的反应。以肿瘤生长率和存活率为主要指标来衡量治疗效果。在尸检时评估潜在的药物相关毒性。结果:与体外单一药物相比,联合治疗在多种细胞系中始终优于单一药物。使用发光和基于流式细胞术的检测系统确认了肿瘤细胞死亡的预期机制,例如 caspase 激活。联合治疗在卵巢癌的同基因和基于 PDX 的小鼠模型中均被证明具有优越性。最值得注意的是,在患者来源的卵巢癌异种移植模型中,联合治疗使所有研究动物的已建立肿瘤完全消退。结论:SW IV-134 与顺铂化疗联合使用是一种有前途的治疗选择,值得进一步进行临床前开发和评估,作为晚期卵巢癌女性的治疗方法。关键词:Sigma-2 受体、Sigma-2/SMAC 药物偶联物、顺铂、联合治疗、卵巢癌