嗡嗡声蜜蜂:“通过振动和冰疼痛方法的结合,这种FDA(k)清除的局部产品是控制与静脉穿刺和化妆品注射相关的疼痛的最有效的方法。我们的解决方案使用高频,低振幅振动,它比打击乐器或其他电子刺激振动疗法具有更微妙的感觉。用户应在第一个应用程序之前熟悉振动强度。”
我们通过实验评估了具有固定频率和固定相互作用的 transmon 量子比特对于实现自旋系统模拟量子模拟的适用性。我们使用全量子过程断层扫描和更高效的哈密顿量断层扫描在商用量子处理器上测试了实现此目标的一组必要标准。低振幅下的显著单量子比特误差被确定为阻碍在当前可用设备上实现模拟模拟的限制因素。此外,在没有驱动脉冲的情况下,我们还发现了伪动态,我们将其与量子比特和低维环境之间的相干耦合联系起来。通过适度的改进,对丰富的时间相关多体自旋哈密顿量家族进行模拟模拟可能是可能的。
摘要在本文中分析了乘用车的路径遵守控制的非线性动力学。考虑了特定建模方面的影响,例如轮胎变形,转向动力学,反馈延迟和控制器饱和。可能在状态空间中发现并分析了不同车辆模型和控制器设计的状态空间中的平衡点和奇异点。然后更详细地分析稳定路径的平衡:稳定对照增益的结构范围在稳定图中呈现,并沿稳定结构域的平衡吸引盆地在数值延伸的帮助下近似。突出显示了控制的不安全区域,其中稳定的平衡被低振幅不稳定的极限循环所包围。最后,显示了控制定律的特定修改如何消除不必要的平衡点并增加稳定路径的吸引力的盆地,从而导致对车辆的更安全,更可靠的控制。
我们对新生代气候的大部分理解都是基于在底栖有孔虫中测得的D 18 O的记录。然而,这种测量反映了全球温度和海平面的组合信号,从而阻止了对气候系统的相互作用和反馈的清晰了解,从而导致全球温度变化。我们在过去的450万年中的温度变化进行了新的重建,包括长期冷却的两个阶段,第二阶段在中期更新世过渡期间(1.5至90万年前)的第二阶段加速冷却,并伴随着从主要的41,000年年度的低振幅定期到占主导地位的100,000年度100,000年级高晶格的过渡。长期冷却和可变性速率的变化与最初由地质过程驱动的碳循环的变化一致,随后是南部海洋碳循环的其他变化。m
在本文中分析了乘用车自动车道的反馈控制。计算基于单轨车辆模型,并考虑了转向系统dynamics。使用线性反馈控制器来控制横向动力学,同时考虑了反馈延迟和下层转向控制器的影响。沿线性稳定性限制检测到亚临界型HOPF分叉,并使用数值延续后跟随周期轨道的新兴分支。表明,在某些参数范围内,直线运动的稳定平衡存在低振幅不稳定的极限周期。基于限制周期,规定了稳定控制收益的安全和不安全的区域。在实验室条件下,使用传送带上的小规模概念在实验室条件下也可以识别线性稳定结构域内不安全的控制区域。理论和实际结果在直线运动的吸引力领域方面表现出了很好的一致性。
具有各向异性,周期性电势景观的分子设备可以用作布朗电动机。当潜在的景观用化学反应或外力循环切换时,这种设备可以利用随机的布朗式波动产生定向运动。最近,用电动开关的DNA折纸转子带有设计的带有棘轮样的障碍物的电动DNA折纸转子来证明了定向的布朗运动状旋转运动。在这里,我们还证明了最初并未设计的DNA折纸转子的固有各向异性,因为布朗运动设备足以导致运动运动。我们表明,对于外部开关场的低振幅,这些设备作为布朗电动机运行,而在较高幅度下,通过过度阻尼电动机的确定性运动可以更好地描述运动。我们表征了这两个方案中运动的幅度和频率依赖性,表明在初始陡峭上升后,角速度峰值和下降,用于过度驾驶振幅和频率。转子运动的特征通过系统的简单随机模型很好地描述。
摘要。没有独特的方法将量子算法编码为Quanmu tum电路。具有有限的量子计数,连接性和连贯性时间,电路优化对于在未来十年中充分利用量子设备是必不可少的。我们介绍了两个单独的电路优化想法,并将它们组合在称为AQCEL的多层量子电路优化协议中。第一个成分是一种识别量子门重复模式的技术,开辟了未来硬件优化的可能性。第二个成分是通过识别零或低振幅计算基础状态和冗余门来降低电路复杂性的方法。作为演示,AQCEL被部署在迭代且有效的量子算法上,旨在模拟高能物理中的最终状态辐射。对于此算法,我们的优化方案带来了与原始电路相比,栅极计数的显着降低而不会失去任何精度。另外,我们已经研究了是否可以使用多项式资源在量子计算机上证明这一点。我们的技术是通用的,可以用于多种量子算法。
摘要 - 稳态视觉诱发电位(SSVEP)当前是脑部计算机界面(BCI)中使用最广泛的范例之一。尽管SSVEP-BCI的特征是它们的高且稳健的分类性能,但从用户体验的角度来看,反式刺激的重复表现是不舒服的。的确,SSVEP刺激的低水平视觉特征使它们随着时间的流逝而紧张,并且可能会破坏需要持续关注的任务。他们甚至可以诱导癫痫发作。本研究探讨了刺激幅度深度(90%的幅度降低),以设计SSVEP刺激,以改善用户舒适性的解决方案。在低振幅和标准的全幅度SSVEP刺激之间,系统比较了不同管道获得的分类精度。结果揭示了使用与任务相关的组件分析(TRCA)分类方法的高(99.8%)和低幅度(80.2%)刺激的高分类精度。目前的发现证明了减少SSVEP刺激幅度以增加用户舒适度为透明BCI操作铺平道路的有效性。
将量子算法编码到量子电路中没有唯一的方法。由于量子比特数、连接性和相干时间有限,量子电路优化对于充分利用近期量子设备至关重要。我们引入了一种名为 Aqcel 的新型电路优化器,旨在根据电路的初始状态从受控门中删除冗余的控制操作。特别地,Aqcel 可以通过使用量子计算机识别零振幅计算基态,从多项式计算资源中的多控门中去除不必要的量子比特控制,即使所有相关量子比特都纠缠在一起。作为基准,Aqcel 部署在用于模拟高能物理中的终态辐射的量子算法上。对于这个基准,我们已经证明 Aqcel 优化的电路可以用少得多的门产生等效的终态。此外,当将 Aqcel 与嘈杂的中型量子计算机一起部署时,它可以通过截断低于某些阈值的低振幅计算基础状态来有效地生成与原始电路近似的量子电路,并且保真度很高。我们的技术可用于各种量子算法,为进一步简化量子电路以使其对实际设备更有效开辟了新的可能性。
中等雷诺数下的薄翼型动态失速通常与靠近前缘的小层流分离气泡的突然破裂有关。鉴于层流分离气泡对外部扰动的强烈敏感性,使用直接数值模拟研究了在不同水平的低振幅自由流扰动下 NACA0009 翼型截面上动态失速的发生。对于前缘湍流强度 Tu = 0 .02%,流动与文献中的干净流入模拟几乎没有区别。对于 Tu = 0 .05%,发现破裂过程不太平稳,并且在动态失速涡流形成之前观察到层流分离气泡中强烈的相干涡流脱落。非线性模拟与瞬态线性稳定性分析相辅相成,该分析使用最优时间相关 (OTD) 框架的空间局部公式对破裂分离泡中层流剪切层的时间相关演化进行分析,其中非线性轨迹瞬时切线空间中最不稳定的部分随时间的变化被跟踪。得到的模式揭示了两种状态之间的间歇性切换。分离剪切层上的开尔文-亥姆霍兹滚转快速增长,分离泡过渡部分的二次不稳定性复杂化。后者的出现与线性子空间内瞬时增长率的大幅飙升以及非线性基流的更快转变有关。这些强烈的增长峰值与随后从层流分离泡中脱落的能量涡流密切相关。