Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
宽带间隙(WBG)碱性晶酸盐透明氧化物半导体(TOSS)近年来引起了越来越多的关注,因为它们的高载流子迁移率和出色的光电特性,这些特性已应用于诸如Flat-Panel显示器等广泛的应用。然而,大多数碱性地球酸盐是由分子束外延(MBE)生长的,有关锡源的问题存在一些棘手的问题,包括带有SNO和SN源的波动性以及SNO 2源的分解。相反,原子层沉积(ALD)是具有精确的化学计量控制和原子尺度上可调厚度的复杂stannate钙钛矿生长的理想技术。在此,我们报告了la-srsno 3 /batio 3 perovskite异质结构异质集成在SI(001)上,该结构使用ALD种植的La掺杂的Srsno 3(LSSO)作为通道材料,并用作MBE生长的Batio 3(BTO)作为介电材料。反射性高能电子衍射和X射线衍射结果表明每个外延层的结晶度为0.62,全宽度最高(FWHM)。原位X射线光电子光谱结果证实,ALD沉积LSSO中没有SN 0状态。这项工作扩展了当前的优化方法,用于减少外在LSSO/BTO钙钛矿异质结构中的缺陷,并表明过量的氧气退火是增强LSSO/BTO异质结构的电容性能的强大工具。Besides, we report a strategy for the post-treatment of LSSO/BTO perovskite heterostructures by controlling the oxygen annealing temperature and time, with a maximum oxide capacitance C ox = 0.31 μF/cm 2 and a minimum low- frequency dispersion for the devices with 7 h oxygen annealing at 400 C. The enhancement of capacitance properties is primarily attributed to a在额外的异位过量氧气退火过程中,膜中氧空位的减少和异质结构界面中的界面缺陷。
摘要:保护物质中的量子相干性不受环境影响对于在量子技术中使用分子和材料以及开发增强光谱至关重要。本文展示了如何在光学腔的背景下用量子光修饰分子发色团,以产生具有可调相干时间尺度的量子叠加态,这些相干时间尺度比裸分子的相干时间尺度更长,即使在室温和浸入溶剂中的分子中也是如此。为此,我们开发了分子极化态的退相干率理论,并证明涉及这种混合光物质态的量子叠加可以比裸分子存活时间长几个数量级,同时保持光学可控性。此外,通过研究有损腔存在下的这些可调相干增强,我们证明它们可以使用当今的光学腔来实现。该分析提供了一种可行的策略来设计和增加分子中的量子相干寿命。
III-V 半导体与硅外延杂化过程中的晶体相控制 Marta Rio Calvo、Jean-Baptiste Rodriguez *、Charles Cornet、Laurent Cerutti、Michel Ramonda、Achim Trampert、Gilles Patriarche 和 Éric Tournié * Dr. M. Rio Calvo、Dr. J.-B.罗德里格斯、 L. Cerutti 博士、 Pr. É. Tournié IES,蒙彼利埃大学,法国国家科学研究院,F- 34000 蒙彼利埃,法国 电子邮箱:jean-baptiste.rodriguez@umontpellier.fr , eric.tournie@umontpellier.fr Pr. C. Cornet 雷恩大学,雷恩国立应用科学学院,法国国家科学研究院,FOTON 研究所 – UMR 6082,F-35000 雷恩,法国 Dr. M. Ramonda CTM,蒙彼利埃大学,F- 34000 蒙彼利埃,法国 Dr. A. Trampert Paul-Drude-Institut für Festocorporelektronik,Leibniz-Institut im Forschungsverbund Berlin eV,Hausvogteiplatz 5-7,10117,柏林,德国 Dr. G. Patriarche 巴黎-萨克雷大学,法国国家科学研究院,纳米科学与技术中心纳米技术,91120,帕莱索,法国 关键词:外延生长,反相域,单片集成,III-V 半导体,硅衬底
农民和放射科医生等现场工作人员在资源匮乏的环境中为人工智能模型的数据集收集发挥着至关重要的作用。然而,我们对现场工作人员的专业知识如何在数据集和模型开发中得到利用知之甚少。根据对 68 名为资源匮乏环境构建人工智能开发人员的采访,我们发现开发人员将现场工作人员降格为数据收集者。开发人员将数据质量差归咎于工人的做法,认为工人腐败、懒惰、不守规矩,他们自己就是数据集,他们追求监视和游戏化来训练工人收集更高质量的数据。尽管模型试图模仿现场工作人员的专业知识,但人工智能开发人员将工人视为非必需品,并降低了他们的专业知识以服务于构建机器智能。我们说明了为什么应该将现场工作人员视为领域专家,并重新想象领域专业知识是人工智能发展的重要伙伴关系。
水风信子(WH)是含水层的主要害虫,也是污染环境的香蕉皮废物的主要害虫。WH和香蕉皮有可能产生羧甲基纤维素(CMC)和果胶。CMC和果胶都适用于制造的水凝胶,这些水凝胶专注于天然成分,以用作食品包装材料。将CMC和果胶作为水凝胶材料的应用非常出色,可提高其机械,可生物降解和环境友好的特性。这项研究确定了柠檬酸作为交联剂对基于CMC-肽水凝胶的肿胀特性的影响,并研究了其官能团。通过提取WH纤维素开始杂交CMC-果胶水凝胶的制备。通过漂白和脱脂纤维素过程。纤维素通过两个步骤(碱化和羧甲基化)修改为CMC。在碱化阶段,将纤维素与NaOH 10%溶液混合。为羧甲基化,氯乙酸氮含量(Na-Ca)加入并在55°C下搅拌3.5小时。将水凝胶的制造与5%的比率70:30(w/w。%)的CMC:果胶:果胶。柠檬酸(CA)作为交联药,浓度为5%,10%和15%,用于热处理。混合生物混合凝胶(HBH)的结果是半透明的薄片膜,颜色是褐色。HBH CMC/果胶与以柠檬酸形式添加的交联剂(5%)的肿胀能力最高(6.64 wt。,在1小时内)。另外,通过傅立叶转化红外光谱法(FTIR)分析观察到羧基与羟基的存在。
设计,优化和制造。数值技术,例如有限元分析,验收动力学,第一原理计算和多尺度建模,可以有效地预测机构属性并优化设计。与此同时,人工智能和大数据分析可以通过机器学习发现新材料和反向设计。智能手段与自适应控制系统相结合,实现了生产过程的自动化和实时优化,从而提高了制造效率和精度。尽管数据和计算成本不足,但随着技术的进步,材料科学却朝着更高的精度和自动化方向发展。
在农业应用中,采用纳米颗粒作为载体基质来生产混合功能材料具有未来性。在这项研究中,采用更环保的改进型原位溶胶-凝胶法合成尿素-二氧化硅纳米杂化物,尿素负载高达 36% (w/w),负载效率约为 83%。表征研究表明,尿素成功掺入二氧化硅纳米颗粒中,纳米颗粒和尿素分子之间形成强键,而二氧化硅纳米颗粒的结构和形态没有任何实质性改变。纳米杂化物在水中表现出十多天的缓慢和持续释放行为,进一步证实了上述观察结果。开发的尿素-二氧化硅纳米杂化物可用作缓释氮肥的潜在候选材料。2020 Elsevier BV 保留所有权利。
目前,人们正在研究具有光控的固态杂质自旋,以用于量子网络和中继器。其中,稀土离子掺杂晶体有望成为光的量子存储器,具有潜在的长存储时间、高多模容量和高带宽。然而,对于自旋,通常需要在带宽(有利于电子自旋)和存储时间(有利于核自旋)之间进行权衡。这里,我们展示了使用 171 Yb 3 + ∶ Y 2 SiO 5 中高度杂化的电子-核超精细态进行的光存储实验,其中杂化可以同时提供长存储时间和高带宽。我们达到了 1.2 毫秒的存储时间和 10 MHz 的光存储带宽,目前仅受光控制脉冲的 Rabi 频率限制。在此原理验证演示中的存储效率约为 3%。该实验是首次使用具有电子自旋的任何稀土离子的自旋态进行光存储。这些结果为具有高带宽、长存储时间和高多模容量的稀土基量子存储器铺平了道路,这是量子中继器的关键资源。
胞质谷氨酰胺合成酶(GS1)是主要负责玉米叶中的铵同化和重新合并的酶。通过检查酶在叶细胞中酶的过表达的影响,研究了GS1在玉米核产生中的农艺潜力。使用在该领域生长的植物产生并表征了表现出三倍的叶子GS活性增加三倍的转基因杂种。在不同位置,在叶片和束鞘鞘中的叶片和束鞘鞘中的几种过表达GLN1-3(GLN1-3)的基因(GS1)在不同位置生长了五年。平均而言,与对照组相比,转基因杂种中的核产量增加了3.8%。但是,我们观察到,给定领域试验的环境条件和转基因事件同时依赖于这种增加。尽管从一个环境到另一个环境变化,但在不同位置的两个GS1基因(GLN1-3和GLN1-4)多态性区域和核产量之间也发现了显着关联。我们建议使用基因工程或标记辅助选择的GS1酶是产生高屈服玉米杂种的潜在潜在领导者。但是,对于这些杂种,产量增加将在很大程度上取决于用于种植植物的环境条件。