一种更健康的生活方式,将食用食物的食用与低血糖指数结合在一起,可以减轻糖尿病的风险。先前的研究旨在使用高纤维原材料(例如甜玉米(Zea mays saccharata sturt))使用高血糖指数开发食品,并用血糖指数36和红豆(expaseolus fulgaris l.)和26。然而,这些产品表现出弱点,包括牛奶中的抗弯曲性较低,对消费者感觉接受的不足以及未验证的血糖指数值。因此,这项研究的目的是(1)增强牛奶中瞬间薄片的紧缩阻力; (2)评估瞬时薄片产品的物理和感觉特征; (3)根据感觉测试的最佳公式确定瞬时片状产品的血糖指数值。根据红豆与甜玉米(公式1至5)的比例开发了五个公式,分别为80:120,90:90:110,100:100:100:100,100,110:90和120:80。所有薄片公式的颜色往往相似(主要黄色)。牛奶中的紧缩阻力超过2分钟,主要受红豆部分的影响。感官曲线表明,诸如淡黄色的棕色,甜的香气,咸味,咸味,咸味,咸味,灼热的味道,沙质质地,沙质质地,硬质感,变性的余味,粘稠的味道,粘稠的味道,粘稠的味道粘稠时,需要减少牛奶的牛奶时需要减少,粘稠的味道需要在牛奶中减少。公式3作为基于感觉曲线和红豆比例的最佳公式出现,低血糖指数值为28。
摘要。随着物联网(IoT)今天推出,其寿命可能超过十年的设备,保守的威胁模型应考虑具有量子计算能力的对手。IETF指定的西装标准定义了用于物联网软件更新,标准化元数据和加密工具(数字签名和哈希功能)的安全体系结构,以确保更新合法的更新。西装性能已在量词前的文本中进行了评估,但尚未在量词后的情况下进行评估。以Riot中可用的诉讼的开源实施为案例研究,我们调查了量子后的注意事项,尤其是抗量子的数字签名,重点介绍了具有严格的内存,CPU和能量消耗限制的低功耗,基于微控制器的IoT设备。我们基准在一系列物联网硬件上进行一系列量子前和后量牌签名方案,包括ARM Cortex-M,RISC-V和Espressif(ESP32),这些方案构成了现代32位微控制器架构的大部分。在诉讼的背景下解释我们的基准,我们估计了从量词前签名到后签名过渡的现实影响。
a 代尔夫特理工大学机械、海洋与材料工程学院,海洋与运输技术系,Mekelweg 2, 2628 CD 代尔夫特,荷兰 b 根特大学机电系统与金属工程系和 FlandersMake@UGent - Corelab EEDT-MP,Sint-Martens-Latemlaan 2B, 8500 Kortrijk,比利时 c 查尔姆斯理工大学力学与海洋科学系,流体动力学系,412 96 哥德堡,瑞典 d 挪威科技大学能源与过程工程系,水力实验室,NO-7491 特隆赫姆,挪威 e 布伦瑞克工业大学 Elenia 高压技术与电力系统研究所,Schleinitzstraße 23, 38106 布伦瑞克,德国 f IHE 代尔夫特水教育研究所,Westvest 7, 2611 AX 代尔夫特,荷兰 g 代尔夫特理工大学水利工程、水利结构和洪水风险系,荷兰 h 密歇根大学土木与环境工程系,2350 Hayward,安娜堡,密歇根州 48109-2125,美国
低碳氢的生产、运输、储存和交付有许多潜在的供应链路径,而市场上尚未确定氢供应链的最佳前进路径。目前生产的大多数氢不符合低碳标准,因为它们是通过天然气蒸汽甲烷重整 (SMR) 生产的。使用可再生电力的电解和带有碳捕获和储存 (CCS) 的 SMR 是生产低碳氢最具商业可行性的技术。到 2030 年代中期,可再生能源生产的氢的成本可能与带有 CCS 的 SMR 生产的氢的成本持平,尽管确切的时间取决于电解槽成本和假设的可再生电力价格表现轨迹。如果要大规模部署氢,通过管道和大型中央存储枢纽输送氢,可能利用科罗拉多州现有的天然气存储设施,这可能是最具成本效益的运输和储存机会。