不幸的是,气球升空后不久就坠入海中。为了减轻负载,气球吊篮可以脱离水面,人们向气球上扔沙子。这一策略奏效了,但重量过轻导致转向系统失效,气球上升到 700 米的危险高度。低气压加速了氢气逸出,导致气球在几天后坠毁,引发了一系列连锁问题。人们做好了应对单个威胁的充分准备,但未能预见到这些威胁的累积效应以及由此产生的一系列风险。
如果使用错误的电池,可能会有爆炸的风险。在使用,存储或运输过程中,电池不能受到高度或低气压的高度温度和低气压。在火灾或热烤箱中处理电池,或者机械压碎或切割电池会导致爆炸。将电池留在极高的温度周围环境中会导致爆炸或气体易燃液体的泄漏。遭受极低气压的电池可能导致爆炸或易燃液体或气体的泄漏。根据说明处理用过的电池。7。仅使用此产品中包含的适配器。不正确的适配器极性或电压会严重损坏产品。
风暴是造成人造结构和材料损坏和损失的最大自然原因之一。风暴有多种形式,但主要考虑的风的类型是飓风、龙卷风和雷暴、温带低气压和局部地形诱发现象(例如下坡风)引起的下击暴流。像安德鲁飓风和卡特里娜飓风这样的重大事件在一次事件中就造成了人员伤亡和数百亿美元的损失。它们连续数周成为新闻头条。此外,每年雷暴引起的局部极端风都会造成规模较小但频率更高的死亡和破坏。尽管自 20 世纪 60 年代初以来,人们对风对建筑物的影响的认识取得了重大进展,但可以说,这些进展大部分都是在极低的预算下取得的。尽管北美地区风暴造成的损失历来远远超过地震造成的损失(图 1),但与地震工程研究相比,风能研究的资金却微不足道。
塑料对环境构成了巨大威胁。塑料在土地和海洋中的积累现在是世界上最令人恐惧的问题,这主要是因为它的性格不足。塑料降解一直是科学领域中不可能的概念,但是纳米技术提供了一种革命性和现代的方式来解决环境中塑料积累的问题。纳米颗粒的最大优势之一是,我们可以根据我们的需求增加和降低生物降解速率。纳米颗粒通过改变其代谢循环来增强微生物的聚乙烯降解能力。大量研究表明,纳米技术的掺入增强了微生物降解聚苯材料的能力。如今,生物降解的塑料已大量生产以替代聚乙烯材料,但它们无法与塑料的脆性相匹配。可生物降解的塑料的热,机械和低气压质量较差,这是其主要缺点。为了克服这一点,纳米颗粒被纳入生物聚合物。如果发现纳米技术,微生物学和生物技术之间的适当平衡,则可以在所有领域在经济和可行的情况下进行塑料降解。
L 屋顶路缘,平顶或斜顶(拆下运输) L 服务平台(符合 OSHA 标准) L 水平型号的百叶窗式集气室 L 120 伏 GFI 插座和照明 L TEFC 风扇电机,高效和汽车规格选项 L 电机缺相保护 L 电机皮带护罩 L 振动隔离(外部) L 排气循环(大多数型号) L 蒸发冷却包 L 带冷冻水或 DX 线圈的冷却部分 L 带热水、蒸汽或电线圈的加热部分 L 100% OA 型号的空间温度控制 L DDC 微处理器控制 L 温和天气状态 L 燃烧器警报喇叭 L 清除计时器(30 秒) L 三相电源监视器 L 烟雾探测器 L Magnahelic 和 Photohelic 仪表 L FM 或 IRI 气体歧管 L 天然气转丙烷(LP) 转换开关 L 高气压调节器 L 低气压燃烧器组件(无需额外费用)
5.1.5.3 长期极值................................................................................................................ 10 5.1.7 高相对湿度伴随低温............................................................................................... 11 5.1.7.1 最高记录................................................................................................................. 11 5.1.7.2 发生频率................................................................................................................. 11 5.1.7.3 长期极值............................................................................................................. 12 5.1.8 低相对湿度伴随高温................................................................................................. 12 5.1.8.1 最低记录................................................................................................................. 12 5.1.8.2 发生频率................................................................................................................. 12 5.1.8.3 长期极值............................................................................................................. 12 5.1.9 低相对湿度伴随低温................................................................................................. 12 5.1.10 风速............................................................................................................................. 12 5.1.10.1 最高记录................................................................................................................. 13 5.1.10.2 发生频率............................................................................................................... 13 5.1.10.3 长期极值............................................................................................................... 14 5.1.11 降雨率....................................................................................................................... 14 5.1.11.1 最高记录....................................................................................................................... 15 5.1.11.2 发生频率................................................................................................................. 15 5.1.11.3 长期极值................................................................................................................. 16 5.1.12 吹雪....................................................................................................................... 17 5.1.12.1 最高记录................................................................................................................. 17 5.1.12.2 发生频率................................................................................................................. 18 5.1.12.3长期极值................................................................................................................ 18 5.1.13 积雪.................................................................................................................... 18 5.1.13.1 最高记录............................................................................................................................... 19 5.1.13.2 发生频率 .............................................................................................................. 19 5.1.13.3 长期极值 .............................................................................................................. 19 5.1.14 冰积 .............................................................................................................................. 20 5.1.14.1 有记录以来的最高值 ...................................................................................................... 20 5.1.14.2 发生频率 ............................................................................................................. 20 5.1.14.3 长期极值 ............................................................................................................. 20 5.1.15 冰雹大小 ............................................................................................................................. 21 5.1.15.1 有记录以来的最大值 ................................................................................................ 21 5.1.15.2 发生频率 ............................................................................................................. 21 5.1.15.3 长期极值 ............................................................................................................. 21 5.1.16 高气压...................................................................................................................... 22 5.1.17 低气压...................................................................................................................... 22 5.1.17.1 最低记录................................................................................................................. 22 5.1.17.2 发生频率................................................................................................................. 22 5.1.17.3 长期极值................................................................................................................. 22 5.1.18 高大气密度............................................................................................................. 22 5.1.18.1 最高记录................................................................................................................. 22 5.1.18.2 发生频率................................................................................................................. 22 5.1.18.3 长期极值................................................................................................................. 22 5.1.19 低大气密度............................................................................................................. 23 5.1.19.1 最低记录................................................................................................................. 23记录................................................................................................................ 23 5.1.19.2 发生频率.................................................................................................... 23 5.1.19.3 长期极值...................................................................................................23 5.1.20 臭氧浓度...................................................................................................................... 23 5.1.20.1 最高记录............................................................................................................... 24 5.1.20.2 发生频率............................................................................................................... 24 5.1.20.3 长期极值............................................................................................................... 24
AHR Goldie 博士于 1912 年 1 月去世,享年 7.5 岁,他一生中有一半以上的时间都是英国气象界的活跃人物。他于 1914 年成为该协会的会员,并曾担任顾问和副主席。Archibald Hayman Robertson Goldie 于 1918 年出生于安格斯的 Glenisha,是牧师 Andrew Goldie 的儿子。在邓迪的哈里斯学院上学后,他在圣安德鲁斯大学和剑桥大学圣约翰学院以优异的成绩学习,并于 1913 年以数学 Tripos 的成绩毕业。他于 1913 年 8 月进入气象办公室,是 1918 年战争前当时的主任 Ilr. WN Shaw(后来的纳皮尔爵士)招募的最后一批具有高科学资质的人员之一。戈尔迪在气象局的最初经验是在总部、法尔茅斯天文台(当时他希望为英格兰西南部建立一个气象中心)和埃斯克代尔缪尔天文台任职的相对较短的一段时间内获得的。1915 年,戈尔迪被任命加入新成立的气象部门,随后在法国任职,在意大利北部任职六个月,直到 1918 年 11 月停战后,他以少校身份指挥总部设在科隆的占领军气象部门。1919 年 11 月复员后,他回到伦敦的气象局总部,负责管理主要为满足航空、民用和军用气象需求而设立的当地中心网络。1921 年秋,他接替了戈尔迪。 A. Crichton 被任命为爱丁堡气象局局长,负责苏格兰的气候和一般咨询工作以及阿伯丁、埃斯克代尔缪尔和勒威克的天文台:事实证明,这项任命对他来说非常合适,而且卓有成效。他于 1925 年成为爱丁堡皇家学会会员,并于 1936 年在圣安德鲁斯大学获得理学博士学位。当 1938 年初制定扩大气象局研究活动的计划时,Goldie 被调到伦敦担任助理主任,特别负责该领域,但在当年晚些时候战争爆发后,他搬到了格洛斯特郡的斯通豪斯,负责管理撤离到那里的气候、仪器和海洋部门。 1941 年,气象研究委员会成立,由于战争爆发而推迟,此后直到 1953 年,他一直密切参与其行政和其他活动。1948 年,他成为副首席科学官,并被任命为研究副主任,负责办公室内研究的总体协调,更直接的研究方向是气象物理学,包括气象研究飞行队进行的研究、低层大气湍流研究、仪器开发和天文台工作。1950 年初,气候学和海洋分支再次归到他的领导下。戈尔迪曾参与英国国家大地测量和地球物理委员会、大气污染研究委员会 (DSIR) 和阵风研究委员会(由航空研究委员会赞助)。1936 年至 1947 年,他担任国际地磁和大气电协会秘书。1951 年,他被任命为 CHE。1953 年 5 月退休,在气象局工作近 40 年后,他回到苏格兰,住在斯特灵。尽管戈尔迪还有其他官方承诺,但他对科学研究的热情一直没有改变。在他退休时,据记载,他“具有非凡的管理能力,能够同时进行高水平的个人研究”。从 1923 年起,大约 30 年间,他在该学会、爱丁堡皇家学会和气象局的出版物上发表了 17 篇论文。此外,他还为科学期刊发表了几篇短文。1934 年,他修订并大量重写了 Abercromby 于 1887 年首次出版的著名著作《天气》。他的论文总体上表明,他坚持不懈地致力于阐明大气过程机制的细节,并能够最大限度地利用当时可用的观测数据。这里只能简要地提及他的主要贡献主题,大致按时间顺序排列:高压和低压条件下高空温度的分布;大气中波浪的形成及不连续水平面的其他特性;风的阵性;受昼夜变化影响的大气结构和运动;地磁暴中的高大气电流系统;不同气团和低气压锋面的降雨特性;贝尔岩灯塔的风结构分析;不列颠群岛的年平均空气环流;低气压和涡旋低气压的运动学特征;飞机凝结尾迹的形成条件;气旋和反气旋的动力学;全球一般环流问题。戈尔迪博士是一个非常可爱的人。他在私人和职业生活中都有很高的个人标准。他在工作中注意节约用力,但在必要时也不吝啬努力。他总是帮助同事,并以身作则,发挥很大的影响。他热情好客,对同事及其家人十分关爱。1928 年,他与 Marion Wilson 结婚,后者于 1048 年去世;1952 年,他与协会会员 Helen Carruthers 结婚。
我很高兴向大家介绍美国能源部 (DOE) 2020 财年 (FY) 机构财务报告。该报告提供了关键的绩效和财务信息,表明了促进能源独立、推进科学研究和创新以及以强大的核威慑保护国家的承诺。DOE 战略计划是该部门通过五个战略目标为政府制定优先事项的路线图:1) 促进美国能源主导地位;2) 推进科学发现和国家实验室创新;3) 确保美国的核安全;4) 推进国家核废料管理;5) 加强美国能源部门和 DOE 基础设施的网络安全。DOE 在 2020 财年继续在实现这些目标方面取得进展。该部门的努力重点是从核能到化石能源到可再生能源再到能源储存的综合能源战略。美国能源部继续对核安全企业进行现代化和资本重组,同时推进核不扩散工作并支持美国海军核舰队。该部门正处于充满挑战的时期,继续解决战略管理优先事项,包括合同和项目管理、环境清理、核废料储存和网络安全,同时还要应对持续的全球大流行。美国能源部继续致力于提高计划和运营的效率和有效性。特别是,该部门的贡献在抗击 COVID-19 中发挥了重要作用。美国联邦机构和国家实验室综合体的计算领导者,以及与世界领先的计算大学和顶尖技术公司的合作伙伴关系,已经组建了一个前所未有的高性能计算联盟,以协助研究该病毒。2020 财年,能源部支持发展可负担的可再生能源和可持续交通,将电动汽车电池组成本降低至每千瓦时 169 美元,将陆地风力发电成本降低至每千瓦时 3.4 美分,将电力驱动系统成本降低至每千瓦时 8 美元。能源部的努力减轻了监管负担,包括颁布一项政策,将长期液化天然气出口授权延长至 2050 年,并将加拿大纳入监管和许可信息桌面 (RAPID) 工具包,使监管和许可信息可快速获取。这些努力减少了原油供应过剩,而原油供应过剩导致美国经济面临重大风险。能源部在应对多场飓风、热带风暴、气旋、热带低气压、德雷科风暴、多起山火和地震中发挥了重要作用。为应对 COVID-19 疫情造成的原油价格严重混乱,能源部通过与美国生产商达成的紧急交换协议,提供了 2110 万桶原油储存空间。
技术行业向聊天机器人提问真空技术用于在低气压条件下进行的各种过程和物理测量。发生这种情况的原因有很多,包括去除可能引起反应的大气成分、破坏正常室温下的平衡、延长粒子行进距离以最大限度地减少碰撞以及减少分子撞击以防止表面污染。真空过程中允许的最大压力受单位体积分子数、平均自由程或形成单分子层所需时间等因素限制。在室温和正常大气压下,1 立方英尺的空气中约有 7 × 10^23 个分子高速运动。通常使用一柱汞的重量来表示大气压,一个标准大气压等于 760 毫米汞柱或 760 托。帕斯卡单位后来被采用为压力测量的国际单位,相当于 7.5 × 10^-3 托。真空技术的使用可以追溯到 20 世纪初的电灯泡制造和电子管生产。它使一些工艺能够取得优异的结果或实现在正常条件下无法达到的结果,例如镜片表面晕染和血浆制备。核能的出现带动了真空设备的大规模发展,其应用扩展到空间模拟、微电子等领域。人们已经开发出各种容量的产生、维持和测量真空的设备,从每分钟 1/2 到 1,000 立方英尺不等。单级泵的压力水平可低至 2 × 10^-2 托,双级泵的压力水平则低于 5 × 10^-3 托。泵从大气压到大约 1 托达到全速,然后在极限压力下转速降至零。双叶片泵采用偏心转子设计,适用于泵送液体和气体。另一种类型是旋转活塞泵,它类似于单叶片泵,但包含一个用作进气阀的空心叶片,当转子到达最高点时,叶片会关闭泵。极限压力水平受高压侧和低压侧之间泄漏的限制,泄漏是由于密封油中的气体夹带以及摩擦引起的油分解造成的。这种泵的典型应用包括食品包装、高速离心机、紫外光谱仪,以及作为其他泵的前级泵或低真空泵。容量范围为每分钟 100 至 70,000 立方英尺,工作压力范围为 10 至 10^-3 托。峰值速度通常在 1 至 10^-2 托的压力范围内产生。机械增压器使用同步的 8 字形叶轮和定子将气体从高真空侧转移到前真空侧。机械增压器在正常压力范围内运行时通常需要另一个泵作为后备。机械增压器的常见应用包括真空熔炼炉、电气设备浸渍设备和低密度风洞。真空技术在各行各业都至关重要,因为所有工艺和测量都是在低于正常大气压的条件下进行的。这样做通常是为了去除可能在工艺过程中引起物理或化学反应、扰乱平衡条件、延长粒子行进距离或减少每秒分子撞击次数的大气成分。最大允许压力可以根据各种参数定义,包括单位体积的分子数、平均自由程或形成单分子层所需的时间。在室温和正常大气压下,空气中约有 7 × 1023 个分子以随机方向运动,速度约为每小时 1,000 英里。传递给壁面的动量交换相当于每平方英寸壁面面积产生 14.7 磅的力。大气压可以用各种单位表示,包括单位横截面积、高 760 毫米的汞柱的重量。这导致了替代单位的开发,例如帕斯卡,其定义为牛顿每平方米。真空技术的首次大规模应用发生在 20 世纪初,用于制造电灯泡。随后出现了其他需要在真空下运行的设备,包括各种类型的电子管。人们发现某些在真空中进行的过程可以取得优异的结果,或在正常条件下无法实现的结果,这导致了进一步的发展。20 世纪 50 年代核能的出现推动了真空设备的大规模发展。人们发现了越来越多的真空过程应用,包括空间模拟和微电子技术。人们开发了各种用于产生、维持和测量真空的设备。其中包括容量从每分钟 1/2 到 1,000 立方英尺不等的泵,工作压力从大气压到低至 2 × 10-2 托或低于 5 × 10-3 托。其中一种设备是双叶片泵,可以泵送液体和气体。另一种类型是旋转活塞泵,它类似于单叶片泵,但有一个空心叶片作为进气阀。其可用容量范围从每分钟100立方英尺到高达70,000立方英尺,通常在10托到0.01托的压力下工作。然而,峰值性能在1-0.1托的较窄范围内实现,速度取决于所用前级泵的类型。机械增压泵的特点是两个8字形叶轮,它们在固定定子内以相反的方向旋转。气体被夹在这些叶轮和定子壁之间,然后被输送到泵的另一侧。值得注意的是,这种泵在与另一台在其典型压力范围内串联工作的泵配对时,运行效果最佳。一种常用的前级泵是油封旋转泵。机械增压泵通常用于真空熔炼炉、电气设备浸渍设备和低密度风洞。