摘要 本研究旨在利用从利比亚 Al-Gabal Al-Gharby 的橄榄油加工废料中分离出来的一些真菌来生产和部分纯化冷活性脂肪酶。分离出了 12 个属的 31 种真菌。F. solani 最为普遍,占总镰刀菌的 94% 和总真菌的 28.7%,在 10 和 20°C 的脂肪酶生产琼脂培养基上测试了 102 种真菌分离株的脂解活性。最活跃的分离株是链格孢菌(2 个分离株)、镰刀菌和青霉菌(每种 1 个分离株)。通过测序(ITS)对最活跃的四个分离株进行了分子鉴定。通过优化一些营养和环境因素,最大限度地提高了四种强效真菌菌株的冷活性脂肪酶产量。 F. solani AUMC 16063 在 pH 3.0 和 15°C 条件下培养 8 天后,利用硫酸铵作为氮源,能够产生最大量的脂肪酶活性(46.66U/mL/min)和比活性(202.8U/mg)。然而,在同样的条件下,当使用酵母提取物作为氮源 6 天后,产生的低温活性脂肪酶显示出最高的比活性(1550U/mg)和脂肪酶活性(36.74U/ml/min)。这是首次对 Fusarium solani 产生、部分纯化、最大化和表征低温活性脂肪酶的研究。
摘要:低温场效应晶体管(FET)为应用提供了巨大的潜力,最值得注意的例子是量子信息处理器的经典控制电子设备。对于后者,低功耗的片上FET至关重要。这需要在Millivolt范围内的操作电压,只有在具有超级阈值斜率的设备中才能实现。然而,在基于散装材料的常规低温金属 - 氧化物 - 氧化 - 氧化 - 氧化氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 脱氧剂(MOS)FET中,由于疾病和MOS界面处的带电缺陷,实验上实现的逆下阈值倾斜在几个MV/DEC周围饱和。基于二维材料的FET提供了有希望的替代方案。在这里,我们表明,基于六角形硝化硼的Bernal堆叠的双层石墨烯和石墨门在0.1 K时表现出逆下阈值斜率,在0.1 K时表现出逆下阈值,接近250μV/dec,接近玻尔兹曼的限制。此结果表明在没有散装界面的范德华异质结构中对带尾的有效抑制,从而在低温温度下导致了卓越的装置性能。关键字:Bernal堆叠的双层石墨烯,带隙,子阈值坡度,疾病
Timken 低温应用轴承经过专门设计和加工,可满足此类环境的极端要求。我们的轴承采用先进材料、专业热处理和混合设计,确保卓越的性能、可靠性和使用寿命。选择 Timken 满足您的低温轴承需求,体验无与伦比的质量和工程卓越性。
B'Abstract:磷酸锂(LFP)/石墨蝙蝠长期以来一直占据了能源电池市场的主导,预计将成为全球电池电池市场中的主要技术。但是,LFP/石墨电池的快速充电能力和低温性能严重阻碍了它们的进一步扩散。这些局限性与界面锂(LI)-OION运输密切相关。在这里,我们报告了一种基于宽的酯基电解质,该电解质具有高离子的有效性,快速的界面动力学和出色的膜形成能力,通过调节Li Salt的阴离子化学。通过采用三电极系统和松弛时间技术的分布来定量地揭示电池的界面屏障。还系统地研究了所提出的电解质在防止LI 0电镀和持续均匀和稳定的相互作用中的优势作用。LFP/石墨细胞在80 \ XC2 \ XB0 C至80 \ XC2 \ XB0 C的超速温度范围内表现出可再生能力,并且在没有寿命的情况下出色的快速充电能力。特别是,实用的LFP/石墨袋细胞在1200个循环后(2 C)(2 C)和10分钟电量在25 \ XC2 \ XB0 C时达到89%(5 c),即使在80 \ xc2 \ xb0 C.'\ xc2 \ xb0 C \ xb0 C \ xb0 C上,可实现80.2%的可靠性。
丰富的氙气观测实验:•研究一种罕见的核衰减实验,称为中性剂量双β衰变•Nexo将在5000千克Xenon-136同位素中搜索中微子双β衰变(2 x 10 28核),从而使少数范围的腐烂范围及其范围的潜在腐烂范围•合并范围的范围范围,•用于从衰减中重建电子的动能的TPC•用于将生成的光信号转换为电信号的硅光化型(sipms)
然而,仅靠基本规则的缩放不足以降低单元高度。要完成这项任务,必须将设计缩放因子付诸实践。例如,通过缩放标准单元中有源器件的数量/宽度以及缩放次要规则(如尖端到尖端、扩展、PN 分离等),标准单元高度将进一步降低。然而,压缩逻辑单元的有源区域部分将使其他设计规则成为设计缩放的瓶颈。为了规避这些问题,有人建议减少或实际上消除为电源轨保留的区域,方法是将其从晶圆正面移到器件接触层下方,以将其分配给额外的单元内布线[1][2]以及在 N/P 上堆叠 P/N 器件[3]。图 MM-3 显示了 2025 年标准单元缩放的趋势。
• Sessi 等人,拓扑手性半金属 PdGa 两种对映体中手性相关的准粒子干涉。自然通讯 11 ,3507 (2020) https://doi.org/10.1038/s41467-020-17261-x • Zhang 等人,拓扑超导异质结构中的竞争能级。纳米快报 21 ,2758-2765,(2021)。https://doi.org/10.1021/acs.nanolett.0c04648 • Chang 等人,SnTe/PbTe 单层横向异质结构中的涡旋取向铁电畴。先进材料,33 ,2102267 (2021)。 https://doi.org/10.1002/adma.202102267 • Küster 等人,将约瑟夫森超电流和 Shiba 态与非常规耦合到超导体的量子自旋关联起来。《自然通讯》12,1108 (2021)。https://doi.org/10.1038/s41467-021-21347-5 • Küster 等人,与超导凝聚态耦合的局部自旋之间的长距离和高度可调相互作用。《自然通讯》12,6722 (2021)。https://doi.org/10.1038/s41467-021-26802-x • Brinker 等人,原子制作的量子磁体的异常激发。《科学进展》8,eabi7291 (2022)。 DOI:10.1126/sciadv.abi7291 • Küster 等人,稀疏自旋链中的非马约拉纳模式接近超导体。美国国家科学院院刊 119,e2210589119 (2022)。https://doi.org/10.1073/pnas.2210589119 • Soldini 等人,二维 Shiba 晶格作为晶体拓扑超导的可能平台。自然物理学 19,1848–1854 (2023)。https://doi.org/10.1038/s41567-023-02104-5 • Wagner 等人,Designer-Supraleiter nehmen Form an。物理学家时代 (2024) https://doi.org/10.1002/piuz.202401701
图1b显示了提出的三切口T型(3S-TT)桥腿,其开关节点SW 1可以与正,中或负轨道绑定,即中间或负轨,即𝑉in,p = in,p =𝑉in,n =𝑉n = in = in n = the,在相同的双极和/或三级输出电压能力中,与fb相同。与常规的TT桥腿[13],[14]不同,中点开关S F,1用标准的GAN晶体管实现,而不是通过两个这样的晶体管的抗序列连接或单一的双向交换机[15] - [17]。由于通常是非常低的直流电压,通常是p≤2v和/或𝑉in,n≤2v:1c,只要gan hemt的基本(功能)对称性可以支撑负耗压电压𝑉ds <0,只要栅极少量电压𝑉gd gd t - ds> - ds> ds> - (𝑉ds> ds> ds> ds> ds> ds> - 𝑉t-t- t- t- gs)。因此,可以使用负栅极源电压𝑉gs在一定程度上增加反向阻塞能力。1,2有利地,在任何给定时间,在载荷电流路径(即与负载串联)中只有一个开关,而不是在FB的情况下而不是两个开关。因此,考虑到每个位置的相同数量的晶体管,提出的3S-TT将传导损失减少至少两个。3图进一步注意到,在3S-TT中,从S HS,1到中点开关S F的换向,1涉及低侧开关的反行二极管,如缩放波形所示。即,2进一步显示了FB的关键波形和提议的3S-TT相模块(即,在以下内容中考虑了𝑁pH = 1),在下面考虑了相同的输出电压以及(总数)串联电感器和输出滤波器套管器的相同需求和应力(请注意3S-TT的设备开关频率是3S-TT的设备开关频率是FB,但)。
■lng煮沸:在船上> 80 000吨■LH2液化器:10吨/天100吨/天■LH2存储:火箭(30 t)卡车(0,1 t)飞机(1 t)飞机(1 t)船(10 - 10 000 T)