raav对于基因替代疗法至关重要,将功能基因传递给靶向组织。低电压电子显微镜(LVEM)为有效分析AAV Capsids的结构和质量提供了重要的潜力。基因治疗旨在通过将基因的功能拷贝传递给靶向组织,通常使用诸如AAV之类的病毒矢量来纠正遗传缺陷。这些矢量由封装治疗基因的27 nm直径capsid组成。电子显微镜,包括低温透射电子显微镜(Cryo-TEM),通常用于分析这些病毒颗粒。但是,这些方法通常具有挑战性,需要大型且昂贵的专业设备和条件。
作者的贡献:AGMB:对作品的构思、设计以及作品数据的获取、分析和解释做出了重大贡献;起草作品;最终批准出版版本;同意对作品的所有方面负责。JASJ:对作品数据的解释做出了重大贡献;对重要的知识内容进行了批判性修改;最终批准出版版本;同意对作品的所有方面负责。EGCN:对作品数据的解释做出了重大贡献;对重要的知识内容进行了批判性修改;最终批准出版版本;同意对作品的所有方面负责。MMG:对作品数据的解释做出了重大贡献;对重要的知识内容进行了批判性修改;最终批准出版版本;同意对作品的所有方面负责。AASF:对作品数据的解释做出了重大贡献;对重要的知识内容进行了批判性修改;最终批准出版版本;同意对工作的所有方面负责。RAM:对工作数据的解释做出重大贡献;对工作的重要知识内容进行重大修改;最终批准要发布的版本;同意对工作的所有方面负责。RRM:对工作数据的解释做出重大贡献;对工作的重要知识内容进行重大修改;最终批准要发布的版本;同意对工作的所有方面负责。TAAMF:对工作数据的解释做出重大贡献;对工作的重要知识内容进行重大修改;最终批准要发布的版本;同意对工作的所有方面负责。MFA:对工作数据的解释做出重大贡献;对工作的重要知识内容进行重大修改;最终批准要发布的版本;同意对工作的所有方面负责。CMA:对工作构思、设计以及工作数据的获取、分析和解释做出重大贡献;起草工作;最终批准要发布的版本;同意对各方面的工作负责。
由模拟大脑生物电信息处理的忆阻器构建的神经形态系统可能会克服传统计算架构的限制。然而,仅靠功能模拟可能仍无法实现生物计算的所有优点,生物计算使用 50-120 mV 的动作电位,至少比传统电子设备中的信号幅度低 10 倍,以实现非凡的功率效率和有效的功能集成。因此,将忆阻器中的功能电压降低到这种生物幅度可以促进神经形态工程和生物模拟集成。本综述旨在及时更新这一新兴方向的努力和进展,涵盖设备材料成分、性能、工作机制和潜在应用等方面。
目的作者研究了药物抵抗性局灶性癫痫发作期间低压快活动 (LVFA) 模式的功能连接 (FC) 和脑电图功率的变化。他们假设这种变化将有助于对癫痫手术结果进行分类。方法在 79 例接受立体脑电图 (SEEG) 评估和切除手术的药物抵抗性局灶性癫痫患者中,使用非线性回归 (h2) 和三个区域内/之间的功率谱特性测量围 LVFA 期间的 FC 变化:癫痫发作区 (SOZ)、早期传播区 (PZ) 和非受累区 (NIZ)。计算去同步和功率去同步 h2 指数以评估 LVFA 期间 EEG 去同步的程度。采用多元逻辑回归来控制混杂因素。最后,生成了受试者工作特征曲线以评估去同步化指数在预测手术结果方面的表现。结果 53 名患者显示发作期 LVFA 和不同的 SOZ、PZ 和 NIZ 区域。其中,39 名患者(73.6%)在最后一次随访时实现了无癫痫发作。通过 h 2 分析测量,在 LVFA 期间在无癫痫发作组中发现 EEG 去同步化:与 LVFA 前和 LVFA 后相比,SOZ 内和区域之间的 FC 减少。相反,非无癫痫发作组没有显示出明显的 EEG 去同步化。h 2 去同步化指数,而不是功率去同步化指数,能够在切除手术后对无癫痫发作和非无癫痫发作患者进行分类。结论 通过区域内和区域间 h 2 分析测量的围 LVFA 期间 EEG 去同步化可能有助于识别术后结果良好的患者,并且可能在未来改善致痫区的识别。
在纳米级CMOS过程中,随着特征尺寸的缩小,外在厚度会变细,这将导致Nell和Pwell的较高板电阻。因此,将距离(D1)从N +活性区域增加到NWELL/PWELL中的P +活性区域可以有效地扩大NWELL的电阻(Pwell)。图6显示了具有四个不同
近来,电荷捕获存储器(CTM)器件,例如硅-氧化物-氮化物-氧化物-硅(SONOS)结构闪存,因其在 15 nm 节点以下进一步缩小的潜力而吸引了众多关注。1 与传统浮栅(FG)器件相比,CTM 器件具有可靠性更高、工作电压更低和制造工艺更简单等优点。1,2 然而,由于隧道氧化物和电荷捕获氧化物厚度的缩小,数据保留仍然存在许多挑战。3 为了克服这些固有的缺点,高 k 材料,例如 HfO2、Al2O3、TiOx、ZnO 和 ZrO2,已被引入到 CTM 器件中,以实现更好的电荷捕获效率和保留能力。4–10 此外,大存储窗口和低工作电压的理想共存仍然是一个巨大的挑战。目前大多数 CTM 器件在低于 6 V 的电压下工作时,存储窗口都可忽略不计。对于高 k 材料,掺杂已被证明是一种实现低功耗充电捕获存储器的潜在方法,例如 Zr 掺杂的 BaTiO 3 和氟化 ZrO 2 。11,12 Gd 掺杂的 HfO 2 (GHO) 是一种很有前途的高 k 材料,已被提出具有相对较高的陷阱密度、大的电导率