美国西部公用事业的大型电力系统可靠性和运营标准规定了协调一致的努力,以有效管理能源短缺情况,包括在紧急情况下使用公司的低频和/或低电压负荷削减计划削减固定负荷,以阻止频率下降,协助在低频事件后恢复频率,并提供最后的系统保护措施,以防止停电或电压崩溃。由于发电短缺或系统干扰,威胁电力系统完整性的紧急情况可能随时发生,无论是本地还是西部互联内部。防止系统全面崩溃的必要措施包括:限制客户需求、匹配发电可用性、实施网络容量限制。在短期内需要减少电力需求或消耗的情况下,需要立即采取紧急行动,并可能直接导致固定负荷削减。第一部分。削减计划的目的和概述该计划确定了公司启动和实施区域负荷削减的过程。本计划的目标是在公平公正地对待客户的同时实现削减,尽量减少削减带来的不利影响,遵守现行州法律法规,并提供平稳、高效和有效的削减管理。第二部分。负荷削减公司将遵守所有州和联邦规定,削减客户使用的电能,以稳定系统电压和频率,防止区域系统崩溃。可能触发负荷削减的事件(无论是根据州政府机构、RC West 区域可靠性协调员的通知,还是根据公司的判断)包括但不限于:
•博士学位(美国加利福尼亚州圣塔克拉拉大学电气工程系)Sanad Kawar,“在物联网应用中,用于收获能源收集的输入功率最大效率跟踪技术”,2020年。•M.Sc.(电气工程系,苏马亚公主技术大学,安曼,约旦)•Moh'd Rasoul Masadeh,“使用低电源电压的CMOS连续时间线性均衡器的设计”,2021。•Mohammed Al-Fayyad,“低功率静态随机访问存储系统的设计和模拟”,2019年。•Abdulla Deeb,“用于混合模式应用程序的模拟IC滤波器的设计”,2018年。•Osama Bondog,“使用CMOS技术和低电源电压增强的D型触发器”,2017年。•Jannah al-Hashimi,“用于模拟信号的开关模式操作放大器的设计低电压应用”,2017年。•Abdallah Hasan,“混合信号应用中使用的高性能样品和保留电路”,2016年。•Waseem al-Akal,“高性能CMOS加法器”,2016年。•穆斯塔法·西哈达(Mustafa Shihada),“高速前端CMOS接收器具有信号均衡”,2016年。•Mahmoud Mohammed,“使用MOSFET晶体管的电压参考电路的设计”,2014年。•Sanad Kawar,“连续收发器ICS信号检测器的高性能损失”,2014年。•HAZEM MARAR,“高性能1.8V PMOS的LVD驱动程序”,2012年。7。美国发行的专利
5.1 附件 A – GR N O 01:发电系统 – 重量低于 5700 KG 的飞机。MTWA ............ 5-1 5.2 附件 B – GR N O 02:电动陀螺仪组和俯仰装置的应急电源指示器(人工地平线)................................................ ........................................... ................... 5-5 5.3 附件 C – GR N O 03:飞机无线电系统电源...... ......................... 5-9 5.4 附件 D – GR N O 04:轮胎在飞行中爆裂 — 连接媒体 ................................. 5-9 ........................................... . 5-11 5.5 附件 E - GR N O 05:轻型飞机活塞发动机大修时期................................................ 5-13 5.6 附件 F – GR N O 06:螺旋桨叶片的日常维护.................................................... ............ 5-25 5.7 附件 G – GR N O 07:在持有马来西亚适航证书的飞机上安装的变距螺旋桨的维护要求。 ........................................... ......................... 5-27 5.8 附件 H – GR N O 08:驾驶舱和客舱燃烧加热器和其相关排气系统................................................................ ........................................... ........................................... 5 -31 5.9 附件 I – GR N O 09: C棉布、亚麻布和合成纤维覆盖的飞机..................................................... 5-33 5.10 A附件 J – GR N O 10:发电系统 – 公交车低电压警告单引擎飞机(附有马来西亚适航证书)............ ........................................... .................................. 5-37 5.11 附件 K – GR N O 11:飞机涂装 ........... ........................................... ................... 5-39
全固态电池被认为是锂离子电池最有前途的竞争对手之一。固体电解质的两个广为人知的性能指标是离子电导率和稳定性。本文发现,通过硫化物基固体电解质中氯取代的协同效应,可以改善这两者。具体来说,通过增加对机械收缩引起的电压稳定性增强的敏感性,氯取代的硫化物固体电解质可以更好地抑制由本体分解和电极界面反应引起的不稳定性。因此,一些富氯锂银锑矿的稳定窗口可以系统地高于一些其他缺氯或无氯电解质,尤其是在实施机械收缩电池组装和测试条件下。因此,使用这些富含氯的锂银锗矿,无需额外涂层,就可展示 4 V 至 5 V 级正极与锂金属负极配对的固态电池系统。此外,由于氯组分会调节低电压下锂银锗矿的稳定性和不稳定性,因此我们可以设计具有不同锂金属稳定性层次的多层配置,以展示固态电池在相对高电流密度下的稳定循环。研究发现,电解质中适中的氯组分最能抑制作为中心电解质层的锂枝晶渗透,除了两个众所周知的稳定性和离子电导率指标外,还强调了略微增加的“不稳定性”是这里相关的隐藏性能指标。了解硫化物电解质中的氯取代效应为全固态电池提供了重要的设计原则。
Organic electrochemical transistors (OECTs), [16,18–27] is currently one of the most studied organic electronic devices and is explored in various applications, such as in fully printed logic circuits, [16,26] active matrix addressed displays, [17] dis- play driver circuits, [19] sensors, [22,23,28–33] neuromorphics, [24] just仅举几例。可以使用不同的打印技术,例如丝网印刷,[19,21] 3D打印,[30]喷墨打印,[34]和其他流程来通过具有成本效益的协议来制造。[35,36]基于OECT的逻辑门和电路也进行了广泛的研究,[35,37-40],其中逆变器作为任何组合逻辑电路的基本组件都起着关键作用。通过采用基于OECT的逆变器[16,26,35]作为高级电路的基本组成部分,可以实现各种形式的基于OECT的数字电池[16,24,35]。在有机电子设备中,通过考虑针对目标的最终应用,在低电压和低功率下运行的电路是完全需要的。通过降低电路的操作电压率,可以最大程度地减少电压应变和降解风险。[16]然后,这允许长时间的操作寿命,与其他技术平台的简单集成以及与通信基础架构的连接。例如,在物联网(IoT)应用程序中,为了降低使用大量电子组件在紧凑型电路中使用大量电子组件的整体功耗,要求对单个逻辑组件的有效使用来扩展IoT生态系统。要意识到这样的电路,必须降低系统元件的操作电压水平。由于逆变器是逻辑电路的关键要素,因此最终电路的工作电压范围可以在很大程度上降低
由锂离子电池提供动力的主机系统,包括Trojan®Onepack锂离子电池,可能与铅酸电池供电时的行为不同。最值得注意的是,锂离子电池可能会与主机系统断开连接,而不会在各种条件下警告以避免内部损坏(“自动断开连接”)。自动断开将导致总功率损失。可能导致自动断开连接的条件的示例包括但不限于外部电源(充电器)或再生制动的高电压·电池低电压或低电量·电量·高电流·高电流·外部短路·高电路或低温·高温·自我诊断,请参阅10.3节,请参阅10.3节:自动盘点:“自动保护限制:”保护范围:“保护范围:”保护范围:“保护范围:”保护。在具有依赖电池电量的基本系统的设备中(例如,具有电子加速度和制动系统的低速车辆(每个都有“受影响的应用程序”),突然突然的功率中断可能会导致不良,意外且潜在的危险设备行为,包括但不限于制动损失或立即制动。Trojan®Onepack锂离子电池的用户和安装程序必须了解在受影响的应用中安装锂离子电池的后果。OnePack电池的用户和/或安装程序(“用户和/或安装程序”)对任何损害,对人员或财产的伤害(包括但不限于死亡)或与此类使用或安装相关的事故承担所有风险和责任。用户和/或安装人员应咨询与锂离子电池有关的任何受影响的降低风险降低措施的制造商。
BSC6048系列太阳能电荷控制器是一种使用高级数字技术来控制和监视充电过程的高科技设备。它具有带有背光,多个负载控制模式和可调节电荷分离参数的LCD显示屏。该控制器可用于各种应用中,例如太阳能离网系统,交通信号和太阳能路灯。The BSC6048 series has several key features: * Automatic battery voltage recognition (12V/24V) * 4-stage PWM charging (bulk, absorption, equalize, float) * LCD display shows operating data and working condition * Humanized button operation * Adjustable charge-discharge parameters * Supports various battery types, including lead-acid and lithium batteries The controller has multiple load control modes, including: * 24-hour working control *光控制 *光和双时间控制 *自动温度补偿和累积的KWH功能BSC6048系列还具有双USB输出(5V/2A)和各种电子保护措施。在规格方面,控制器的最大电流输出为10a至80a,具体取决于模型。它可以处理从12V到48V的电池电压,并且自我消费少于30mA。温度补偿范围为-4mV/°C/2V(25°C),工作温度范围为-20°C至 +50°C。该控制器还具有95%的非调节性和IP32保护类别的湿度等级。终端设计用于易于连接,尺寸从8AWG到4AWG不等。控制器还具有显示各种符号和功能的LCD接口。2。要操作BSC6048系列,用户需要遵循特定的连接顺序:首先连接电池,然后是负载,最后是太阳能电池板。总体而言,BSC6048系列是一个可靠且功能丰富的太阳电荷控制器,适用于广泛的应用。**电池充电系统**描述了三种类型的电池充电系统:1。**铅酸系统**:铅酸系统由不同的电压水平(12V,24V,36V和48V)组成。每个级别都有特定的充电参数,包括浮动充电电压,吸收充电电压,均衡的充电电压和低电压断开连接阈值。**锂电池系统**:讨论了两种类型的锂电池:LifePo4和Licomnnio2。这些电池具有不同的特性,例如恢复电压,恒定充电电压,停止充电电流和低电压断开阈值。**Control Parameters** The control parameters for each type of battery system include: * Charging times * Low voltage disconnection thresholds * Low voltage reconnection thresholds * Load overvoltage disconnection thresholds * Load overvoltage reconnection thresholds **Load Working Modes** A load working mode setting interface is described, which allows users to set timer parameters and control the charging process.**保护功能**控制器具有多个保护功能,包括: *太阳能电池板反向极性保护 *电池反极性保护 *电池反向放电保护 *过热保护 *电池过电流保护这些功能这些功能确保电池充电系统的安全操作。当太阳能系统控制器检测到太阳能电池板的多余电流时,并在2分钟的延迟后自动切换到充电模式。它还具有多个保护功能:如果输出电流超过了延长的额定值,则负载超载关闭负载,然后在2分钟后重新打开;负载短路将控制器处于保护模式,并在2分钟后自动充电;当电池电压下降到设置的低压断开点时,电池低压会关闭负载,当电池电压到达低压重新连接点时,将其重新打开;如果电池电压超过过电压保护水平,电池电量过电压关闭负载。它还通过错误代码(E01-E05)提供故障排除解决方案,建议诸如充电电池或检查负载连接之类的操作。
使用六氟化硫 (SF 6 ) 等离子体对硅 (Si ) 进行低偏压蚀刻是制造电子设备和微机电系统 (MEMS) 的宝贵工具。这种蚀刻提供了几乎各向同性的蚀刻行为,因为低电压偏置不会为离子提供足够的垂直加速度和动能。由于这种近乎各向同性的行为,上述等离子体蚀刻可作为湿法蚀刻的替代方案,例如在 MEMS 和光学应用中,因为它提供了更清洁、更精确的可控工艺。然而,各向同性的程度以及最终的表面轮廓仍然难以控制。在这项工作中,我们将三维特征尺度地形模拟应用于 Si 中的低偏压 SF 6 蚀刻实验,以帮助工艺开发并研究控制最终表面几何形状的物理蚀刻机制。我们通过准确再现三个不同的实验数据集并详细讨论地形模拟中涉及的现象学模型参数的含义来实现这一点。我们表明,与传统的严格各向同性和自下而上的方法相比,我们的现象学自上而下的通量计算方法更准确地再现了实验结果。反应堆负载效应被视为模型蚀刻速率的普遍降低,这通过比较不同负载状态下模拟的蚀刻深度与实验确定的蚀刻深度得到支持。我们的模型还能够使用给定反应堆配置的单个参数集,准确地再现不同掩模开口和蚀刻时间的报告沟槽几何形状。因此,我们提出模型参数,特别是平均有效粘附系数,可以作为反应堆配置的代理。我们提供了一个经验关系,将反应堆配方的平均粘附系数与可测量的蚀刻几何各向同性程度联系起来。这种经验关系可以在实践中用于 (i) 估计独立实验的平均有效粘附系数和 (ii) 微调蚀刻几何形状。
1。Psychalinos,C.,Kasimis,C。和Khateb,F。(2018)。使用单个输出操作式传感器管放大器多输入单输出通用双Quad滤波器。AEU International电子与通信杂志,93,360-367。 https://doi.org/10.1016/j.aeue.2018.06.037 2。Bano,S.,Narejo,G。B.和Shah,S。U. A. (2019)。 低电压单端单端操作性转导放大器用于低频应用。 无线个人通讯,106(4),1875- 1884年。 https://doi.org/10.1007/s11277-018-5726-1 3。 Ali,H。K.和Abdaljabar,J。S.(2017)。 使用操作性转导放大器(OTA)对主动过滤器进行分析和模拟。 欧洲科学杂志,13(15),170-184。 https://doi.org/10.19044/esj.2017.v13n15p170 4。 Mathad,R。S.(2014)。 使用操作转导扩展fir的低频滤波器符号。 IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。 Rezaei,F。和Azhari,S。J. (2011)。 超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。 Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。 Abuelma'atti,M。T.和Quddus,A。 (1996)。 程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。 主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750Bano,S.,Narejo,G。B.和Shah,S。U.A.(2019)。低电压单端单端操作性转导放大器用于低频应用。无线个人通讯,106(4),1875- 1884年。 https://doi.org/10.1007/s11277-018-5726-1 3。Ali,H。K.和Abdaljabar,J。S.(2017)。 使用操作性转导放大器(OTA)对主动过滤器进行分析和模拟。 欧洲科学杂志,13(15),170-184。 https://doi.org/10.19044/esj.2017.v13n15p170 4。 Mathad,R。S.(2014)。 使用操作转导扩展fir的低频滤波器符号。 IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。 Rezaei,F。和Azhari,S。J. (2011)。 超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。 Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。 Abuelma'atti,M。T.和Quddus,A。 (1996)。 程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。 主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750Ali,H。K.和Abdaljabar,J。S.(2017)。使用操作性转导放大器(OTA)对主动过滤器进行分析和模拟。欧洲科学杂志,13(15),170-184。 https://doi.org/10.19044/esj.2017.v13n15p170 4。Mathad,R。S.(2014)。使用操作转导扩展fir的低频滤波器符号。IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。 Rezaei,F。和Azhari,S。J. (2011)。 超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。 Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。 Abuelma'atti,M。T.和Quddus,A。 (1996)。 程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。 主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750IOSR工程杂志(IOSRJEN),4(4),21-28。 https://doi.org/10.9790/3021-04462128 5。Rezaei,F。和Azhari,S。J.(2011)。超低电压,高性能操作跨导放大器及其在可调的GM-C FIL TER中的应用。Microelectronics Journal,42(6),827-836。 https://doi.org/10.1016/j.mejo.2011.04.012 6。Abuelma'atti,M。T.和Quddus,A。(1996)。程序Mable电压模式多功能过滤器使用两个电流输送机和一个操作跨导放大器。主动和被动电子组件,19(3),133-138。 https://doi.org/10.1155/1996/29750
“Gheorghe Asachi” 雅西技术大学,电气工程学院,电气驱动和工业自动化系,23 Prof. D. Mangeron Street,700050 雅西,罗马尼亚 摘要 如今,随着技术的发展,储能系统已成为汽车行业关注的焦点。旨在通过不同的方法开发绿色能源系统来为电动汽车供电。在过去的几年中,已经测试并实施了几种储能系统,但每种解决方案在基础设施、充电站、充电速度或自主性方面都有优点和缺点。本文提出研究一种混合能源系统的电源管理策略,该系统由光伏板 (PV) 作为主电源以及超级电容器和电池组成。由于功率密度不同,后两种储能设备将提供稳定和瞬态的功率需求。对于混合储能系统的每个电源,都描述了动态和数学模型,并提出了一种功率共享策略。实验台是本文的主要贡献,是使用低电压和低电流小规模制造的。本文的全部目的是构建一个由微控制器 ArduinoNano 控制的能源管理系统。本研究的总体目标是根据现有能源的特性分析系统中现有能源之间的能量分配。在模拟过程中,每个储能设备在充电或放电模式下占主导地位,并且将开发和研究用于共享能量的不同控制策略。 关键词:电池、储能系统、混合系统设计、超级电容器 收到日期:2019 年 3 月;最终修订日期:2019 年 9 月;接受日期:2019 年 9 月;以最终编辑形式发布:2020 年 1 月 1. 简介 近年来,研究以绿色能源为导向,产生了一些可以减少对化石燃料依赖的有前景的技术。绿色能源来自自然资源,是可再生的,对环境的影响比产生污染物的化石燃料小得多(Novelli 等人,2019 年)。绿色能源可以在所有主要使用领域取代化石燃料,包括电力、水和空间供暖或汽车。从这些考虑出发,人们对不同领域(如公共交通)的绿色能源的关注度越来越高,* 所有通信应联系作者:电子邮件:florin.rusu@tuiasi.ro;电话:+40745832900