摘要 — 我们开发了一种能够识别低电平脉冲射频干扰 (RFI) 的新型微波辐射计探测器。敏捷数字探测器可以通过直接测量信号的其他矩(而非传统测量的方差)来区分 RFI 和自然热辐射信号。峰度是预测电压的四阶中心矩与二阶中心矩的平方之比。它可以很好地指示 RFI 的存在。本文解决了与正确计算峰度相关的许多问题。推导出了在没有和存在脉冲正弦 RFI 的情况下峰度的平均值和标准差。峰度对短脉冲 RFI(例如来自雷达)的敏感度远远高于对连续波 RFI 的敏感度。发现脉冲正弦 RFI 的最小可检测功率与 ( M 3 N ) − 1 / 4 成比例,其中 N 是独立样本的数量,M 是接收器中的频率子带数量。
芯片选择变为低电平后,地址信息将通过引脚 13 01 “'l0""'l 被输入到芯片中。在第四个时钟脉冲处,将决定是否读取或写入所选的 QQ V” 时间信息。然后,第五个和随后的时钟脉冲将输入或输出时间 I?“ w'DT:'. °' "ff. '”°' .p“": :h°\'“';3'tl'_es¥°:h':“ m:'}n'4u;"§' 数据。在选择性读写模式期间,第十三个和随后的时钟脉冲将被忽略,直到下一个芯片选择 ow' 高低偏移。在连续读写模式期间,时间脉冲输出(7、10、11、12)第 61 个和后续时钟脉冲也被忽略,直到“例如,chipdmect higmow gxcmsiom当§top输入(4)保持打开或连接到逻辑“1”时,连续输出定时脉冲通常为 32 us 宽,并且上电复位可用于每秒、每分钟为外部电路计时,
CS4192 是单片 BiCMOS 集成电路,用于将来自微处理器/微控制器的 10 位数字字转换为互补直流输出。直流输出驱动通常用于车辆仪表板的空心仪表。10 位数据用于直接线性控制仪表的正交线圈,在仪表的整个 360° 范围内具有 0.35° 分辨率和 ± 1.2° 精度。来自微控制器的接口是通过串行外设接口 (SPI) 兼容串行连接,使用高达 2.0 MHz 的移位时钟速率。数字代码与所需的仪表指针偏转成正比,被移入 DAC 和多路复用器。这两个块提供切向转换功能,可将数字数据转换为所需角度的适当直流线圈电压。在 45 ° 、135 ° 、225 ° 和 315 ° 角处,切向算法在仪表运动中产生的扭矩比正余弦算法大约高 40%。这种增加的扭矩减少了由于这些临界角度下的指针下垂而导致的误差。每个输出缓冲器能够为每个线圈提供高达 70 mA 的电流,并且缓冲器由公共 OE 启用引脚控制。当 OE 变为低电平时,输出缓冲器关闭,而芯片的逻辑部分保持通电并继续正常运行。OE 必须在 CS 下降沿之前处于高电平才能启用输出缓冲器。状态引脚 (ST) 反映输出的状态,并且在输出被禁用时处于低电平。串行仪表驱动器具有自我保护功能,可防止发生故障。每个驱动器均受到 125 mA(典型值)过流保护,而全局热保护电路将结温限制在 170°C(典型值)。只要 IC 保护电路检测到过流或过温故障,输出驱动器就会被禁用。驱动器保持禁用状态,直到 CS 上出现下降沿。如果故障仍然存在,输出驱动器将再次自动禁用。
1 GPIO58 MCU GPIO 2 RSTN 复位信号,低电平有效 3 GPIO11 MCU GPIO 4 GPIO08 MCU GPIO 5 GPIO05 MCU GPIO 6 GPIO04 MCU GPIO 7 GPIO09 MCU GPIO 8 GPIO47 MCU GPIO 9 GPIO45 MCU GPIO 10 GPIO44 MCU GPIO 11, 13, 30, 31 GND 接地 12 ANT 天线端口 14 VCC 输入电压 15 GPIO32 MCU GPIO 16 GPIO33 MCU GPIO 17 GPIO37 MCU GPIO 18 GPIO1 MCU GPIO 19 GPIO0 MCU GPIO 20 GPIO3 MCU GPIO 21 GPIO2 MCU GPIO 22 GPIO6 SWD 数据 23 GPIO7 SWD CLK 24 GPIO16 单片机 GPIO 25 GPIO17 单片机 GPIO (UART_TXD) 26 GPIO14 单片机 GPIO 27 GPIO15 单片机 GPIO 28 GPIO62 单片机 GPIO (UART_RXD) 29 GPIO60 单片机 GPIO
江苏杰杰微电子(又名 JJM)的汽车级 MOSFET 提供 -100V 至 650V 的击穿电压 V DS_Max。栅极源阈值电压 V GS(th) 为高电平(2.7 ~ 3.5V)或低电平(1.5 ~ 1.9V,-1.0 ~ -3.0V)。源极漏极导通电阻 R DS(ON) 低至 0.56mΩ(@ V GS = 10V)。FOM 低至 55。这些 MOSFET 通常组装在高效功率封装中,要么是小型表面贴装型,要么是传统通孔型。这些包括但不限于以下具有优异热特性的封装:PDFN3x3-8L、PDFN5x6-8L/-D、PowerJE®10x12(兼容TOLL)、PowerJE®7x8(兼容sTOLL)、TO-247-3/7L等。所有器件均按照AEC理事会和JEDEC定义的相关标准进行了长期可靠性和质量测试。
当芯片选择 (CS) 处于非活动状态(高电平)时,ADDRESS 和 I/O CLOCK 输入最初被禁用,DATA OUT 处于高阻抗状态。当串行接口将 CS 置于活动状态(低电平)时,转换序列从启用 I/O CLOCK 和 ADDRESS 以及将 DATA OUT 从高阻抗状态移除开始。然后,串行接口向 ADDRESS 提供 4 位通道地址,向 I/O CLOCK 提供 I/O CLOCK 序列。在此传输过程中,串行接口还从 DATA OUT 接收先前的转换结果。I/O CLOCK 从主机串行接口接收长度在 10 到 16 个时钟之间的输入序列。前四个 I/O 时钟将 4 位地址加载到地址寄存器的 ADDRESS 上,选择所需的模拟通道,接下来的六个时钟提供对模拟输入进行采样的控制时序。
CA9306 器件是带有使能输入的双双向 I 2 C 和 SMBus 电压电平转换器,可在 1.2V 至 3.3VV REF1 和 1.8V 至 5.5VV REF2 的范围内工作。CA9306 器件允许在无需方向引脚的情况下在 1.2V 和 5V 之间进行双向电压转换。开关的低导通电阻 (RON) 允许以最小的传播延迟进行连接。当 EN 为高电平时,转换器开关处于导通状态,SCL1 和 SDA1 I/O 分别连接到 SCL2 和 SDA2 I/O,从而允许端口之间的双向数据流。当 EN 为低电平时,转换器开关处于关闭状态,端口之间存在高阻抗状态。CA9306 器件可用于将 400kHz 总线与 100kHz 总线隔离,方法是控制 EN 引脚在快速模式通信期间断开较慢的总线,并进行电压转换。可用封装:MSOP-8、DFN3x4-8、DFN2x3-8 封装。
• 移除 J22 隔离块中的 3V3 跳线,并将电流表连接到此跳线上。 • 考虑反向通道 UART 和连接到 MSPM0L1117 的任何电路对电流消耗的影响。考虑在隔离跳线块处断开这些电路,或者至少考虑最终测量中的电流吸收和供应能力。 • 确保 MSPM0L1117 上没有浮动输入/输出 (I/O)。这会导致不必要的额外电流消耗。每个 I/O 都被驱动,或者如果 I/O 是输入,则被拉到或驱动到高电平或低电平。 • 开始目标执行。 • 为了获得最准确的电流测量结果,请将设备置于自由运行模式,并断开 MSPM0L1117 和电路板调试部分(接头 J22)之间的编程信号。 • 测量电流。请记住,如果电流水平波动,则很难获得稳定的测量结果。测量静态状态更容易。
1 GPIO58 MCU GPIO 2 RSTN 复位信号,低电平有效 3 GPIO11 MCU GPIO 4 GPIO08 MCU GPIO 5 GPIO05 MCU GPIO 6 GPIO04 MCU GPIO 7 GPIO09 MCU GPIO 8 GPIO47 MCU GPIO 9 GPIO45 MCU GPIO 10 GPIO44 MCU GPIO 11, 13, 30, 31 GND 接地 12 ANT 天线端口 14 VCC 输入电压 15 GPIO32 MCU GPIO 16 GPIO33 MCU GPIO 17 GPIO37 MCU GPIO 18 GPIO1 MCU GPIO 19 GPIO0 MCU GPIO 20 GPIO3 MCU GPIO 21 GPIO2 MCU GPIO 22 GPIO6 SWD 数据 23 GPIO7 SWD CLK 24 GPIO16 单片机 GPIO 25 GPIO17 单片机 GPIO 26 GPIO14 单片机 GPIO 27 GPIO15 单片机 GPIO 28 GPIO62 单片机 GPIO 29 GPIO60 单片机 GPIO
将 PS 引脚设置为低电平,IC 进入省电模式,因此电流消耗可限制为 10 µ A(最大值)。将 PS 引脚设置为高电平,则释放省电模式,IC 正常工作。此外,还包含间歇操作控制电路,有助于从省电模式平稳启动。一般来说,可以通过间歇操作(关闭或唤醒合成器)来节省功耗。在这种情况下,如果 PLL 不受控制地通电,则由于参考频率(fr)和比较频率(fp)之间未定义的相位关系,产生的相位比较器输出信号是不可预测的,并且在最坏的情况下可能需要更长的时间来锁定环路。为了防止这种情况,间歇操作控制电路在通电期间强制相位检测器输出有限的误差信号,从而保持环路锁定。在省电模式下,除省电功能必不可少的电路外,相应部分停止工作,然后电流消耗降至 10 µ A(最大值)。此时,Do 和 LD 变为与环路锁定时相同的状态。即,Do 变为高阻抗。VCO 控制电压自然保持在由 LPF 的时间常数定义的锁定电压。因此,VCO 的频率保持在锁定频率。