ST Generation Haps仅限于低纬度(<35º)或夏季操作图片来源:空中客车,HAPS4ESA 2019 Latududes(<35º)或夏季操作
未来珊瑚漂白的空间和时间模式不确定,阻碍了全球保护的努力,以保护珊瑚礁免受气候变化的影响。我们对海洋变暖的日常预测的分析确立了本世纪全球珊瑚礁的严重漂白风险的持续性,年度持续时间,并确定了至关重要的浮雕。我们表明,低纬度珊瑚区域最容易受到热应力的影响,并且会因缓解气候而几乎没有缓解。到2080年,珊瑚的漂白很可能在春季的大多数礁石上开始,而不是夏末,而对于某些低纬度珊瑚礁来说,全年的漂白风险预计将是很高的,而不管是否努力减轻有害的温室气体。通过确定地球的礁区域的风险最低,我们的结果将优先考虑限制未来珊瑚礁生物多样性损失的努力。
未来珊瑚漂白的空间和时间模式不确定,阻碍了全球保护的努力,以保护珊瑚礁免受气候变化的影响。我们对海洋变暖的日常预测的分析确立了本世纪全球珊瑚礁的严重漂白风险的持续性,年度持续时间,并确定了至关重要的浮雕。我们表明,低纬度珊瑚区域最容易受到热应力的影响,并且会因缓解气候而几乎没有缓解。到2080年,珊瑚的漂白很可能在春季的大多数礁石上开始,而不是夏末,而对于某些低纬度珊瑚礁来说,全年的漂白风险预计将是很高的,而不管是否努力减轻有害的温室气体。通过确定地球的礁区域的风险最低,我们的结果将优先考虑限制未来珊瑚礁生物多样性损失的努力。
未来珊瑚漂白的空间和时间模式不确定,阻碍了全球保护的努力,以保护珊瑚礁免受气候变化的影响。我们对海洋变暖的日常预测的分析确立了本世纪全球珊瑚礁的严重漂白风险的持续性,年度持续时间,并确定了至关重要的浮雕。我们表明,低纬度珊瑚区域最容易受到热应力的影响,并且会因缓解气候而几乎没有缓解。到2080年,珊瑚的漂白很可能在春季的大多数礁石上开始,而不是夏末,而对于某些低纬度珊瑚礁来说,全年的漂白风险预计将是很高的,而不管是否努力减轻有害的温室气体。通过确定地球的礁区域的风险最低,我们的结果将优先考虑限制未来珊瑚礁生物多样性损失的努力。
气候变化造成的全球经济损失估算主要评估年度气温变化的影响。然而,降水、气温变率和极端事件的作用尚不清楚。本文结合气候模型预测与经验剂量反应函数,将气温均值和变率、降雨模式和极端降水的变化转化为经济损失。结果表明,全球平均气温升温+3°C时,损失将达到国内生产总值的10%,其中较贫穷的低纬度国家受影响最严重(高达17%)。相对于年度气温损失,预测变率和极端事件的额外影响较小,且主要受年际变率的影响,尤其是在低纬度地区。然而,在估算气温剂量反应函数时考虑变率和极端事件,会使全球经济损失增加近两个百分点,并加剧经济尾部风险。这些结果呼吁开展针对特定区域的风险评估,并整合其他气候变量,以更好地理解气候变化的影响。
纬度多样性梯度(LDG)是12种不同进化枝1-4的现代生态系统的普遍特征。在一个多世纪以来,LDGS 13的因果机制仍然有争议,部分原因是许多推定的驱动因素同时又有1,4纬度为1,3,5。过去提供了解开LDG机制的机会,因为随着时间的推移,生物多样性,纬度和可能的因果因素之间的15个关系有所不同。6-169 9。我们量化了过去4000万年中高时空17分辨率在浮游有孔虫中的出现,发现现代风格的梯度仅在1500万年前就出现了。空间和时间模型表明,浮游有孔虫19的LDG可以通过水柱的物理结构来控制。在过去15 mA上纬度20温度梯度的陡峭,与低纬度下垂直温度21结构升高有关,可能会增强利基分配,并为赤道提供了更多22个物种形成的机会。支持这一假设,我们发现23个低纬度物种形成的速率更高,使多样性梯度浸泡了多样性梯度,与时空的24个模式通过浮游有孔虫进行了深度分配。从高25个纬度中剥离物种也增强了LDG,但与26种物种相比,这种作用往往较弱。我们的结果为理解海洋LDGS 27的演变提供了一个步骤变化。28 29 30
我讨论了当前的低地球轨道人造卫星数量,并表明拟议的约 12,000 颗 Starlink 互联网卫星的“巨型星座”将占据 600 公里以下的地球轨道下部,其纬度相关面数密度在大气质量 < 2 时为每平方度 0.005 到 0.01 个物体。如此大的低空卫星在地面观察者看来非常明亮,而最初的 Starlink 卫星是肉眼可见的物体。我根据纬度、一年中的时间和夜晚的时间模拟了预期的照明卫星数量,并总结了地面天文学可能产生的一系列影响。在冬季,在主要天文台典型的低纬度地区,卫星在半夜的六个小时内不会被照亮。然而,在中纬度(45-55 度,例如欧洲大部分地区)黄昏附近的低海拔地区,黑暗地点的肉眼观察者可能同时看到数百颗卫星。
上下文。SRG/EROSITA全套调查(ERASSS)结合了完整的天空覆盖范围的优点和电荷夫妇设备提供的能量分辨率,并提供了迄今为止漫射软X射线背景(SXRB)的最整体和最详细的视图。当太阳能电荷交换排放最小,提供SXRB的最清晰的视图时,第一个ERASS(ERASS1)以太阳能最小值完成。目标。我们旨在从西部银半球中SXRB的每个组成部分中提取空间和光谱信息,重点是局部热气泡(LHB)。方法。,我们通过将天空分为相等的信号到噪声箱,从西部银半球的几乎所有方向提取并分析了Erass1光谱。我们将所有垃圾箱装有已知背景成分的固定光谱模板。结果。我们发现LHB的温度在高纬度(| b |> 30°)处表现出南北二分法,南方更热,平均温度为Kt = 121。8±0。6 eV,北部为kt = 100。8±0。5 eV。 在低纬度时,LHB温度向银河平面,尤其是朝向内星系升高。 LHB发射度量(EM LHB)朝着银河杆近似增强。 EM LHB图显示了与局部灰尘柱密度的清晰抗相关性。 特别是,我们发现尘埃腔隧道充满了热等离子体,可能形成更广泛的热星介质网络。 这可能表明LHB向高银河纬度开放。5 eV。在低纬度时,LHB温度向银河平面,尤其是朝向内星系升高。LHB发射度量(EM LHB)朝着银河杆近似增强。EM LHB图显示了与局部灰尘柱密度的清晰抗相关性。特别是,我们发现尘埃腔隧道充满了热等离子体,可能形成更广泛的热星介质网络。这可能表明LHB向高银河纬度开放。假设恒定密度,我们还通过EM LHB构建了三维LHB模型。LHB的平均热压为P热 / K = 10 100 + 1200 - 1500 cm-3 K,值低于典型的超新星残留物和风吹出的气泡。
对自然遗传多样性的全面取样具有宏基因组学,可以对生态学与进化之间的相互作用进行高度解决的见解。然而,从人口内基因组变异中解决自适应,中性或净化过程仍然是一个挑战,部分原因是唯一依赖基因序列来解释变体。在这里,我们描述了一种分析预测蛋白质结构背景下遗传变异的方法,并将其应用于SAR11 1A.3.V中的海洋微生物种群,该海洋微生物种群主导了低纬度表面海洋。我们的分析揭示了遗传变异与蛋白质结构之间的紧密关联。在氮代谢中的一个中心基因中,我们观察到来自配体结合位点的非源性变体的发生降低是硝酸盐浓度的函数,揭示了养分可用性所维持的不同进化压力的遗传靶标。我们的工作产生了对进化的管理原则的见解,并可以对微生物种群遗传学进行结构意识研究。
极地地区,尤其是北极地区,处于气候危机的前线。近几十年来,北极的表面变暖速率比全球平均值(Rantanen等,2022)高两到四倍,这是一种称为北极扩增的现象(例如Graversen等,2008; Serreze&Barry; Serreze&Barry,2011; Serreze&Francis&Francis&Francis&Francis,2006)。随着温度升高而在北极海冰的厚度和范围内发生了约50%的损失(Gascard等,2019)。未来几十年的北极海冰损失率仍然高度不确定(Bonan,Lehner,&Holland,2021; Bonan,Schneider等,2021),但是后果预计将是严重的:对于本地生态系统而言(Kovacs等,2011; Post等,2013; Post et al。,2013; Tynan,2015; Tynan,2015; Tynan,2015);对于土著人民(Meier等,2014);而且,对于低纬度气候,可能(Cohen等,2014,2020; Jung等,2015; Liu等,2022)。海冰与大气之间的热交是北极扩增的主要驱动力(例如,Lesins等,2012; Previdi等,2021; Serreze等,2009),并确定海冰融化速率(例如Rothrock等人,Rothrock等,1999; Screen&Screen&Screen&Screen Mondss,2010)。