于1975年4月16日在隆德里纳(Londrina),帕拉纳(ParaNá),Embrapa soja(Embrapa Soybean)拥有为大豆生产系统提供解决方案的历史。在广泛的合作伙伴关系中,它已成为热带地区大豆文化的技术生成中的世界。在其对大豆作物的几种矛盾中,应突出显示:1)固氮细菌的接种剂; 2)土壤管理,3)受精,4)土壤保护技术; 5)综合管理害虫,疾病和杂草,以及6)为不同的巴西农业地区开发大豆品种,这使农作物在低纬度的非传统种植区域扩张;等等。Embrapa Soybean还为Paraná,圣保罗和Mato Grosso do Sul开发了小麦品种。
北极海冰损失和放大的北极变暖是气候变化的一个惊人签名,这对北极和中低纬度的气候变化具有重要影响。气候建模,包括极地扩增模型对比项目(PAMIP),它是研究在不断变化的气候下北极海冰损失影响的强大工具。然而,现有的气候模型模拟,包括来自多模型/合奏PAMIP项目的个体气候模型的合奏大小相对较小,可能不允许将强制响应(尤其是极端响应)对北极Sea-Ice对内部变异性的损失进行牢固的分离。因此,我们对对气候变化预测的北极海冰损失的反应的信心减少了。这导致了两个未回答的重要问题:(1)强大的探测极端需要哪些合奏尺寸,以及对预计的北极海冰损失的季节平均反应?和(2)响应取决于分辨率吗?
裂变反应堆,通常是压水式(PWR),总是通过蒸汽涡轮机(它们类似于外燃机)。第一艘船肯定是由手工推动的,但很明显,风具有重要的夹带作用,并且锋面越大,推力就越大,这就是帆的起源。有证据表明,中东早在公元前 5000 年就出现了帆船和木桨,而在公元前 3000 年的古埃及,尼罗河是主要的运输路线,利用水流顺流而下,利用盛行的北风逆流而上。航行(顺风除外)需要对各种风况和海况有丰富的了解,有时还需要非凡的洞察力(例如如何返回港口):大航海时代的两位先驱,大西洋上的哥伦布和太平洋上的乌达内塔,都利用低纬度的东风(信风)和中纬度的西风,以及一般的海洋环流(北半球顺时针),将遥远的大陆人口联系起来,建立永久的贸易路线。目前,大多数水上交通工具(与任何其他类型的陆地、空中或太空交通工具一样)都由储存在船上的液体燃料和热机提供动力,热机将该燃料与氧化剂燃烧的化学能转化为实际执行推进工作所需的机械能。因此,到最后
最早的船只肯定是由人力推动的,但很明显,风具有重要的夹带作用,风帆的起源是风向越大,推力就越大。有证据表明,公元前 5000 年,中东就出现了帆船和木桨,公元前 3000 年,在古埃及,尼罗河是主要的运输路线,利用水流顺流而下,利用盛行的北风逆流而上。航行(顺风除外)需要对各种风况和海况有丰富的了解,有时还需要非凡的洞察力(例如如何返回港口):大航海时代的两位先驱,大西洋上的哥伦布和太平洋上的乌达内塔,都利用低纬度的东风(信风)和中纬度的西风,以及一般的海洋环流(北半球顺时针),将遥远的大陆人口联系起来,建立永久的贸易路线。目前,大多数水上交通工具(与任何其他类型的陆地、空中或太空交通工具一样)都由储存在船上的液体燃料和热机提供动力,热机将该燃料与氧化剂燃烧的化学能转化为实际执行推进工作所需的机械能。因此,到最后
沿岸陷波 (CTW) 承载着海洋对边界强迫变化的响应,是沿岸海平面和经向翻转环流的重要机制。受西部边界对高纬度和公海变化的响应的启发,我们使用线性正压模型来研究科里奥利参数 (b 效应)、海底地形和海底摩擦的纬度依赖性如何影响西部边界 CTW 和海平面的演变。对于年周期和长周期波,边界响应的特点是改良的架波和一类新的漏坡波,它们沿岸传播,通常比架波慢一个数量级,并向内陆辐射短罗斯贝波。能量不仅沿着斜坡向赤道方向传输,而且还向东传输到内陆,导致能量在当地和近海耗散。 b 效应和摩擦力导致沿赤道方向沿岸衰减的陆架波和斜坡波,从而降低了高纬度变化对低纬度的影响程度,并增加了公海变化对陆架的渗透——较窄的大陆架和较大的摩擦系数会增加这种渗透。该理论与北美东海岸的海平面观测结果进行了比较,定性地再现了沿海海平面相对于公海向南的位移和幅度衰减。这意味着 b 效应、地形和摩擦对于确定沿海海平面变化热点发生的位置非常重要。
Title of the Proposed Research The Polar Land‐Ocean Nexus: The Impact of Extreme Climate and Weather Events in the Poles Lead faculty at KU/UAE Dr. Aisha Al Suwaidi, Dr. Mohammed Ali Collaborating faculty at UiT/Norway (including affiliated research centre) Kim Senger, UNIS (https://www.unis.no/) Estimated 3‐year budget need (USD) Introduction (拟议的研究的背景,包括与北极/极地区域相关的背景)在全球范围内,我们目睹了极端的气候扰动,特别是海洋和大气温度的变化,暴风雨和野火事件的强化,以及越来越多的所谓的Pluvial洪水与正在进行的人为气候变化相关的越来越多的洪水,这会影响所有纬度。可以预计,随着气候的继续变暖,风暴,pluvial和Dright/Fire事件的数量和强度将增加(IPCC,2021年)。在卫星和接地数据中,北极和南极中全球海水和大气温度增加的影响以及全球海水和大气温度增加的影响的证据。但是,由于去除过多的材料,全球海洋循环以及生物地球化学周期,随着其他材料的增加,这些变化如何影响地壳稳定性,通过增强风化,这是有限的。极性区域在推动海洋混合和循环中起着至关重要的作用,进而影响碳吸收到海洋,海洋氧合和酸化,全球气候以及我们地球上的生命。我们目前正在尝试通过UNIS最终确定此采样的日期。我们计划扩大这项研究,以组成一个跨学科项目。由于人为驱动的气候变化而导致的极性区域的变化将对我们的星球产生重大影响,正如较低纬度的乐器前档案中所证明的那样。相关活动(与拟议的研究有关的现有工作,包括与挪威的合作有关)采样计划是通过Svalbard Unis的Kim Senger教授提交的,以通过关键间隔进行longyearbyen Core进行采样;这项工作构成了当前博士生对沉积物档案中Pluvial事件的研究的一部分。除了这项工作外,我们还一直在与主要气候变化和增强的水文活性相似的古北极圆圈中的高纬度位点工作。提出的研究(研究目标,研究任务和预期结果/影响)极地地区提供了重要的领域,以研究反映温室条件的现代记录和乐器前的沉积档案,以研究这项活动的强化。我们将使用AI,计算建模,遥感,地球物理学和生物地球化学来提高我们对持续变化的记录的理解,特别是与增强的岩石和土壤风化相关,从而改变了构造的层状板块,从而改变了地壳的负载极地区域的条件以及增加的降水量。该项目有望至少支持四个博士学位项目,并导致高影响力的Q1期刊出版物和会议摘要。还将通过检查极地区域和档案记录中的现代风化来探索大气 - 海洋 - 生物界面 - 斜圈的这种耦合,这将提供有关影响,反应的时间和从这种极端气候变化中恢复地球的信息。该项目将导致可以使政府受益的数据,以了解持续变化对极地地区水文周期的影响以及这种变化的可能影响,这将允许识别缓解和适应策略。该项目将产生广泛的影响,包括在保护北极海洋环境(PAME)方面为联合国环境计划的目标1和3做出贡献;它还可以向政府间气候变化(IPCC)以及支持UN SDGS 13-15的更多信息提供进一步的信息。