《管理与治理杂志》(JMG)获得了2023年的ISI影响因子3.3。(2022年的A 2.7)和2024年1月的Scopus CitesCoreTracker(与2023年的CitesCore 6.4相比,在2022年为4.7)。重要的是要认识到这些影响指标具有固有的局限性,并且仅提供对期刊质量和影响的代表,但如果不将焦油作为焦油的使用,它们可能是对期刊学术表现的有用反映。,他们还可以作为为手稿选择合适的期刊和选择论文阅读的读者的作者的宝贵资源。的确,在这一年中,我们收到了814份原始手稿以进行考虑,并接受了36篇文章发表,反映了2023年的657和29个手稿,反映了大约24%和29篇手稿。这标志着原始提交的历史记录,这是自1997年杂志建立以来的第二年。虽然它为联合编辑团队施加了重大的工作负担,但它也证明了该期刊日益增长的国际声誉。鉴于该期刊的创建目的,尤其是使用最先进的研究方法为声音理论所告知的散布政策和实践的知识,我也很高兴观察到我们的读者基础也不断增加。在2024年,JMG的文章下载了405.279次(相比之下,2023年的395.841次和2022年的273,845次),这是该期刊在其28年活动中的新记录。JMG的读者基于下载的位置,遍布世界各地,
2曲率调查的变分自动编码器17 2.1学习小型演示数据集的潜在表示17 2.2有关小型轨迹数据集的学习表示的相关工作。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.2.1轨迹表示。。。。。。。。。。。。。。。。。。。19 2.2.2曲率正则化。。。。。。。。。。。。。。。。。。。20 2.3曲率调查的VAE。。。。。。。。。。。。。。。。。。。。。。20 2.3.1曲率调查的VAE公式。。。。。。。。。。20 2.3.2 fork姿势示例。。。。。。。。。。。。。。22 2.4曲线机器学习方法。。。。。。。。。。。。。。。。24 2.4.1人示出的轨迹和数据处理。24 2.4.2轨迹的神经网络体系结构。。。。。。。。26 26 2.4.3训练超标剂。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 27 27 2.4.4模型可解释性。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 28 2.5曲线物理机器人实验。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。26 26 2.4.3训练超标剂。。。。。。。。。。。。。。。。。。27 27 2.4.4模型可解释性。。。。。。。。。。。。。。。。。。。。。28 2.5曲线物理机器人实验。。。。。。。。。。。。。。。。29 2.5.1机器人臂。。。。。。。。。。。。。。。。。。。。。。。。。29 2.5.2轨迹跟踪实现。。。。。。。。。。。。30 2.5.3曲线潜在值选择。。。。。。。。。。。。。。。30 2.5.4基线轨迹。。。。。。。。。。。。。。。。。。。。。。31 2.5.5数据收集。。。。。。。。。。。。。。。。。。。。。。。。。31 2.6关于小型传统数据集的学习表示形式的结果和讨论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32
准确确定电池状况是操作中的关键挑战。随着锂离子电池的性能随着时间的推移而降级,对健康状况的准确预测将提高整体效率和安全性。本文根据高斯过程回归提出了一种预测方法,并在单个模型中使用自动相关性确定内核,用于三种不同类型的电池电池。降低了问题的维度和对特征的灵敏度分析后,对模型进行了训练,验证并在看不见的数据上进行了进一步测试。最小测试误差的平均绝对误差为1.33%。结合了预测结果的低不确定性,这表明了使用数据驱动方法预测电池状况的适用性和巨大潜力。
最近,扩散模型已成为强大的生成模型类别。尽管他们成功,但对他们的语义空间的理解仍然有限。这使得在没有其他培训的情况下,获得精确且脱节的图像生成,尤其是以无监督的方式而挑战。在这项工作中,我们从有趣的观察中提高了对它们的语义空间的理解:在一定范围的噪声水平中,(1)扩散模型中学习的后均值预测指标(PMP)是局部线性的,(2)其Jacobian的单数矢量位于其低度语义语义下集中。我们提供了坚实的理论基础,以证明PMP中的线性和低级别的合理性。这些见解使我们能够提出一种无监督的,单步的,无训练的LO W-rank Co n-trollable图像编辑(LOCO编辑)方法,用于在扩散模型中精确局部编辑。LOCO编辑确定了具有良好属性的编辑说明:同质性,可传递性,合成性和线性性。Loco编辑的这些属性从低维语义子空间中受益匪浅。我们的方法可以进一步扩展到各种文本到图像扩散模型(T-Loco Edit)中的无监督或文本监督编辑。最后,广泛的经验实验证明了Loco编辑的有效和效率。可以在项目网站上找到代码和ARXIV版本。1
抽象机器学习(ML)是一个快速发展的场,整合在当今许多科学学科中。随着神经普通微分方程(节点)的最新开发,ML为在药理学和药物测量领域(例如药代动力学(PK)或药物学的范围内模拟动力学系统)提供了一种新工具。与经典的PK建模相比,小说和构想不同的节点方法会带来挑战,但也为其应用提供了机会。在本手稿中,我们介绍了节点的功能,并根据PK原理开发特定的低维节点结构。我们讨论了节点的两个挑战,过度插入和外推以看不见数据,并为这些问题提供了实用的解决方案。我们用几个PK建模示例说明了我们所提出的低维节点方法的概念和应用,包括多室,靶标介导的药物处置和延迟的吸收行为。在所有研究的情况下,节点能够很好地描述数据并在观察到的给药范围内模拟新受试者的数据。最后,我们培养了如何将节点与机械模型结合在一起。这项研究工作增强了人们对如何在PK分析中应用节点的理解,并说明了药理学和药物计量学领域的节点的潜力。
Cheraghian 等人 [ 21 – 23 ] 在零样本 3 维模型分类方 面提出了 3 维点云的零样本学习方法、缓解 3 维零样 本学习中枢纽点问题的方法和基于直推式零样本学 习的 3 维点云分类方法,并将它们封装进一个全新 的零样本 3 维点云方法 [ 24 ] 中。以上方法均是利用已 知类样本的点云表征及其词向量对未知类别进行分 类,开创了零样本 3 维模型分类方法。近年来, CLIP 在零样本图像分类上取得了良好的效果,因此有研 究者将 CLIP 应用到零样本 3 维模型分类方法中, Zhang 等人 [ 25 ] 提出了基于 CLIP 的 3 维点云理解 (Point cloud understanding by CLIP, PointCLIP) 模型, PointCLIP 首先将 3 维点云投影成多个深度图,然 后利用 CLIP 的预训练图像编码器提取深度图特 征,同时将类别名称通过 CLIP 预先训练的文本编 码器提取文本特征。但是 PointCLIP 的性能受到深 度图和图像之间的域差异以及深度分布的多样性限 制。为了解决这一问题,基于图像 - 深度图预训练 CLIP 的点云分类方法 (transfer CLIP to Point cloud classification with image-depth pre-training, CLIP2Point) [ 26 ] 将跨模态学习与模态内学习相结合 训练了一个深度图编码器。在分类时,冻结 CLIP 的图像编码器,使用深度图编码器提取深度图特 征,该方法缓解了深度图和图像间的模型差异。用 于 3 维理解的图像 - 文本 - 点云一致性表征学习方法 (learning Unified representation of Language, Im- age and Point cloud for 3D understanding, ULIP) [ 27 ] 构建了一个图像、文本和点云 3 种模态的 统一嵌入空间,该方法利用大规模图像 - 文本对预 训练的视觉语言模型,并将 3 维点云编码器的特征 空间与预先对齐的视觉 - 文本特征空间对齐,大幅 提高了 3 维模型的识别能力。与之相似的是,基于 提示文本微调的 3 维识别方法 (CLIP Goes 3D, CG3D) [ 28 ] 同样使用 3 元组形式确保同一类别的 3 维模 型特征和图像特征之间以及 3 维模型特征和文本特 征之间存在相似性,从而使点云编码器获得零样本 识别的能力。另外, PointCLIP V2 [ 29 ] 在 Point- CLIP 的基础之上,通过利用更先进的投影算法和 更详细的 3 维模型描述,显着提高了零样本 3 维模型 分类准确率。本文采用语义增强 CLIP 解决图像和文 本的语义鸿沟问题,通过在语义层面为图像和文本 提供更多相似的语义信息,使图像和文本对齐更具有 一致性,从而有效提高 3 维模型的零样本分类性能。 2.2 提示工程
在"⼤脑与机器"这⼀跨学科领域,通信⼯程的最新进展凸显了神经架构对⼯程进展的影响。这促使⼈们开始探索脑启发计算技术,尤其是⽣物识别(BCI)技 术。这些系统促进了活体⼤脑与外部机器之间的双向通信,能够读取⼤脑信号并将其转换为任务指令。此外,闭环BCI 还能以适当的信号刺激⼤脑。该领域的研 究涉及多个学科,包括电⼦学、光⼦学、材料科学、⽣物兼容材料、信号处理和通信⼯程。低维材料(尤其是⽯墨烯等⼆维材料)的特性进⼀步增强了脑启发电 ⼦学的吸引⼒,这些特性是未来类脑计算设备的基础。在⽣物识别(BCI)领域,通信⼯程在促进⼈脑与计算系统在数字通信、物联⽹、新兴技术、空间和IoX 设 备融合等不同领域进⾏⽆缝信息交换⽅⾯发挥着⾄关重要的作⽤。光⼦学和光⼦集成电路(PIC)是这⼀多学科研究中不可或缺的⼀部分,可为⽣物识别(BCI) 提供⾼速、节能的通信和⼀系列优势,包括⾼速数据传输、低功耗、微型化、并⾏处理和光刺激。这些特性使光⼦学成为⼀项前景⼴阔的技术,可推动脑机接⼝ 的发展,并在神经科学和神经⼯程领域实现新的应⽤。
超材料是一种自然界中不存在的人造介质。 p 由小块金属、电介质等组成的单位元素。 p 与波长相比,以足够小的间隔排列 p 电学和磁学性质与原始物质/材料不同
・控制螺旋桨转速和测量容器内的流速,设定螺旋桨推力。保持螺旋桨推力恒定,从未发生空化的状态开始,逐渐降低测量室内部的静压,测量发生尖端涡流空化时的静压。 - 根据测量的静压和螺旋桨运行情况估算实际船速,并评估空化开始速度。
抽象背景:神经生理信号处理中的一个常见问题是从高维,低样本量数据(HDLSS)中提取有意义的信息。我们提出了Roldsis(低维跨度输入空间的回归),这是一种基于降低性降低的回归技术,将解决方案限制在可用观测值所跨越的子空间中。这避免了收缩回归方法中需要的回归过程中的正则参数。结果:我们将Roldsis应用于语音识别实验中收集的EEG数据。在实验中,连续/da/–/ta/中的变形音节作为声学刺激显示给参与者,并记录与事件相关的电位(ERP),然后通过离散小波转换在时间频率结构域中作为一组特征表示。从参与者执行的初步识别任务中选择每组刺激。身体和心理物理属性与每个刺激有关。roldsis推断与每个属性相关的特征空间中的神经生理轴。我们表明,这些轴可以可靠地估计,并且它们的分离与语音分类的个体强度相关。Roldsis提供的结果在时频域中可以解释,可用于推断语音分类的神经物理学相关性。通过交叉验证进行了与常用的正则回归技术的比较。结论:Roldsis获得的预测误差与脊回归获得的预测误差相当,并且比用Lasso和SPLS获得的预测误差较小。然而,Roldsis无需交叉验证就可以实现这一目标,该程序需要从数据中提取大量观测值,并且在平均试验时,降低了信噪比的降低。我们表明,即使Roldsis是一种简单的技术,它也适用于神经生理信号的处理和解释。关键字:脑电图,事件相关电位,线性回归,高尺寸低样本量问题,尺寸减小,音素分类,离散小波转换