结果通过创新的生物技术将采矿业与农业联系起来,称为“生态生物世界”。这项技术以生态方式将废弃的采矿资源(来自开阔矿山的沙子,铸造砂砂)转化为生物螺旋体,以支持恢复土壤化学和特征,并刺激植物的生长和健康。在静态和渗透条件下测试了有机污染的使用的铸造砂的生态生物颗粒过程,以消除危险的有机化合物。根据对治疗八周后所有方法的分析,最终最有效的方法是模仿渗透条件下“堆异构生物渗入”的方法,其中将污染的污染降低到4.3 mg/l doc。基于乳酸杆菌和芽孢杆菌形式的天然微生物财团的活性,对样品的生态生物渗入,可将其用作生物兴奋剂/生物肥料的浸润物产生渗滤液。这种新一代的生物兴奋剂/生物肥料包含有益的细菌,有机酸以及来自非金属原料和废物的溶解的微元素和宏观元素。砂样品的量会影响有机酸的浓度,从而影响生物含量后的元素。开采的低级沙子和使用的原材料(例如铸造砂)代表了生物技术过程的输入材料,并最终再次成为土壤(地球)的一部分,从而对循环结束了对当地采矿业,循环和农业的积极影响。
学习目标/活动在加入低血糖小组作为我的实践的数据分析师时,我有以下学习目标:•学习院内绩效改进项目的解剖结构和整体过程,并参见医院工作中工作的整体领导力和管理结构。•学习如何应用数据以解决和改善医院环境中的过程,并使用该数据来减少患者的伤害并提高人群水平的患者安全。•学习如何教育和向医疗保健和公共卫生从业人员提供有关新兴过程和人口健康问题以及如何推动医疗保健组织内的程序变化的信息。为了实现这些目标,我参加了每两周的团队会议,并且是分配的图表审查。
在论文初步设计的基础上,本文总结了从比邻星附近返回科学数据的低质量星际探测器群的下行链路,其中最关键的技术问题,并在整个系统设计的背景下解释了它们的重要性。主要目标是确定如果使用目前可用的现成技术构建这样的下行链路,将面临哪些主要挑战或障碍,从而为未来对组成设计挑战和技术的研究提供方向和动力。虽然没有任何基本的物理限制会阻碍这种通信系统,但目前可用的技术在几个方面存在严重不足,还有其他一些重大的设计挑战,其解决方案尚不确定。已确定的最大挑战是质量限制、从多个探测器到同一目标系外行星的多路复用同时通信、姿态控制和指向精度以及由于探测器速度不确定性导致的多普勒频移。最大的技术挑战是电力、高功率和波长灵活的光源、选择性强且波长灵活的光学带通滤波器组以及暗计数率极低的单光子探测器。对于其中的一个关键子集,我们描述了我们遇到的困难的性质及其在整个系统环境中的起源。我们还考虑了将接收限制为单个探测器的接收器,并将其与群体情况进行了比较。