摘要:随着电力系统规模的不断扩大,分布式发电和能量管理向有源配电网发展趋势日益明显。然而分布式可再生能源的不稳定性给电力系统运行带来了复杂性,电力系统的有源对称性和平衡性显得越来越重要。本文针对分布式资源和低频减载的特点,提出了一种基于储能功率快速调整的协调运行与控制策略。分析各类可控资源的特点,探究储能的快速响应能力,根据支撑时间对储能类型进行分类,最终通过储能系统的功率分配与调节控制实现决策。此外,针对有源支撑不足的场景,提出了低频减载和分级系统的综合控制策略。通过多能源系统案例验证了所提模型和方法的可行性。
•该项目已全部或部分资金由卫生和公共服务部的联邦资金;战略准备和反应管理;生物医学高级研究与发展局,以下是OT数:HHSO100201800036C。此处的发现和结论是作者的发现,不一定代表卫生与公共服务部或其组成部分的观点。
体细胞突变可能在植物进化中起作用,但与植物体细胞突变有关的常见期望仍未得到充分的测试。与大多数动物不同,假定植物种系在发育后期被搁置,这导致人们期望植物会沿生长积累体细胞突变。因此,对躯体突变的命运做出了一些预测:突变在植物组织中的频率通常很低。高频的突变具有更高的代际传播的机会。树的分支拓扑决定了突变分配;暴露于紫外线(紫外线)辐射会增加诱变。为了深入了解植物中突变的积累和传播,我们产生了两个高质量的参考基因组和一个独特的数据集,该数据集的60个高覆盖范围 - 整体 - 基因组序列的两种热带树种,番茄科植物(Fabaceae)(fafaceae)(fafaceae)和sextonia rubra(lauraceae)。,我们在D.圭亚那的D. guianensis中发现了15,066个从头突变,在S. rubra中发现了3,208个,令人惊讶的是,几乎全部都以低频发现。我们证明1)低频率突变可以传输到下一代; 2)突变系统发育偏离树的分支拓扑; 3)突变率和突变光谱并不明显受到紫外线暴露差异的影响。总的来说,我们的结果表明,植物生长,衰老,紫外线暴露和突变速率之间的联系比通常想象的要复杂得多。
微针 (MN) 为提高透皮给药和诊断的有效性提供了一种有希望的解决方案。然而,大规模制造、部分 MN 渗透和不受控制的药物输送等挑战限制了该技术的有效性。为了克服这些挑战,当前的研究检查了皮肤应变和振动对 MN 插入和药物输送的影响。开发了一种新型多功能冲击涂抹器,用于改善皮肤插入,该涂抹器结合了皮肤拉伸、偏心旋转质量 (ERM) 和线性谐振致动器 (LRA) 微振动功能。此外,使用双光子聚合 (TPP) 和软压花工艺开发了一种用于溶解微针贴片 (DMNP) 的可扩展复制方法。当使用不同频率的 ERM 和 LRA 微振动应用时,DMNP 用于评估模型药物荧光素钠盐 (FSS) 的扩散和浓度。此外,还提出了一种新的计算机模拟方法,将微纳植入多层超弹性皮肤模型,并结合皮肤应变和振动效应。结果表明,施加皮肤应变和振动可降低微纳植入所需的力,并增强药物在皮肤中的溶解和扩散深度,从而提高微纳装置的药物渗透性和有效性。
b'功能陶瓷对于电池的可扩展生产固体电解质至关重要。li-garnet li 7 la 3 Zr 2 O 12 D(LLZO),尤其是其立方相(Cllzo),由于其高LI + conductitivity和广泛的电化学稳定性窗口而引起了人们的注意。但是,高烧结温度引起了对阴极界面稳定性,生产成本和可扩展制造能源消耗的担忧。我们显示了一种替代\ Xe2 \ x80 \ x9csinter-free \ xe2 \ x80 \ x9d途径,以稳定Cllzo作为其烧结温度的一半胶片。具体而言,我们建立了一个时间温度的翻译(TTT)图,该图可捕获基于结晶焓分析的非晶态 - 结晶的LLZO转换,并确认在500 \ xc2 \ xc2 \ xb0的低温下进行薄膜薄膜的稳定稳定。可用于针对生产中碳足迹减少的电池电池设计。
本案例研究考察了超低频神经反馈训练 (ILF-NFT) 干预如何影响一名 8 岁患有 Dravet 综合征 (DS) 的患者的症状,这是一种罕见且高度致残的癫痫。我们的结果表明,ILF-NFT 改善了患者的睡眠障碍,显著降低了癫痫发作的频率和严重程度,并逆转了神经发育衰退,智力和运动技能得到了积极的发展。在 2.5 年的观察期内,患者的药物没有发生重大变化。因此,我们提请关注 ILF-NFT 作为解决 DS 症状的一种有希望的干预措施。最后,我们讨论了这项研究的方法局限性,并保证未来的研究能够在更复杂的研究设计中评估 ILF-NFT 对 DS 的影响。2023 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
我们报告了金纳米粒子 (AuNP) 修饰的石墨烯-硅肖特基势垒二极管的电流-电压特性和低频噪声的结果。测量在环境空气中添加两种有机蒸气四氢呋喃 [(CH 2 ) 4 O; THF] 和氯仿 (CHCl 3 ) 中的任一种进行,在黄光照射 (592 nm) 期间也是如此,接近于测量的金纳米粒子层的粒子等离子体极化频率。当加入四氢呋喃蒸气时(在金修饰的石墨烯-硅肖特基二极管中),我们观察到正向电压 (正向电阻区域) 的直流特性发生变化,而当添加氯仿时(在未修饰的石墨烯-硅肖特基二极管中),在黄光照射下会发生微小的变化。与无照射相比,在黄光照射期间观察到两种气体的低频噪声差异明显较大。与没有 AuNP 层的石墨烯-Si 肖特基二极管相比,AuNP 抑制了噪声强度。我们得出结论,所研究的金装饰肖特基二极管产生的闪烁噪声可用于气体检测。
耦合模式 电感 电感 电磁反向散射 工作频率 125kHz – 134kHz 13.56MHz 860MHz – 960MHz 天线线圈 线圈偶极子 最大工作距离可达 1m 附近:可达 1m 近距离:可达 10cm
抽象的基于深度学习的方法在脑肿瘤图像分割中表现出色。但是,缺乏使用图像的频域特征来解决脑肿瘤病变的研究。为了使这一差距变化,本文提出了改进的网络SLF-UNET,这是一种二维编码器架构结构,结合了基于U-NET的空间和低频域特征。提出的模型有效地从空间和频域中学习信息。在此,我们通过在高频区域中使用零填充,并将卷积操作的一部分与卷积块相结合,从而结合了空间频域特征,并将卷积操作的一部分放置。我们的实验结果表明,我们的方法的表现优于Brats 2019和Brats 2020数据集的当前主流方法。
电流源(CS)具有很大的意义,例如计量学单元的校准以及基本物理学中旋转电偶极矩的测量。[1-6]参考。[1 - 6],获得高效果的要点之一是CS的稳定性。因此,应使用一些补偿方法来抑制当前的噪声。commy,CS噪声被反馈控制系统抑制,该反馈控制系统将电流转换为具有高精度电阻器的电压。[7]但是,由于电子设备中的噪声(对于Examply,1 / F噪声,热噪声和射击噪声),因此有效抑制低频噪声是挑战。需要在低频中使用更高的当前测量方法来解决此问题。幸运的是,根据Ampere定律,电流可以通过线圈转换为磁场,可以通过磁力计测量。目前,光学泵送磁力计(OPM)的灵敏度已达到10英尺 /√< / div>