<3 1 Labarjum Ovogic自动植物lucien.robinault@uphf.fr(L.R. div>); jimmy.lauber@uphf.fr(J.L。) div>2电气工程与商业科学学院,马里波尔大学马里博尔大学,斯洛文尼亚Maribor; ALES.HOBARBBAR@UMSI中心学习Celeau et socgition,Universe,Untorse,Unoulouse,UPS,UPS,31052 Toulouse,法国; sylvain.crmerox@cnrs.fr 4大脑和认知研究中心,粉丝诱因,奥克兰,奥克兰市Auto Unaalland 0627; USMAN.SHSSID@ACE.AC.NZ 6新西兰新西兰新西兰人Chirpractic Research中心; kelly.holt@nzchiroro.co.nz(K.H. div>); heidi.haavik@nzchirro.co.nz(H.H.) div>7卫生科学技术系,奥尔堡大学,9220 AALBORG,DEARSPORTH:IRRANSPRIZIZI.CEZ;电话。 div>: + 64-9-526-6789;传真: + 64-9-526-6788 div>
(1个农业和生命科学研究生院,东京大学)[目的]近年来,由于人们担心能源和食物自给自足的减少以及全球变暖,进口资源的兴起以及Yen的弱点,可持续生物量作物引起了人们的关注。生物量作物不仅用作生物产品的原材料,而且还用作饲料。在这项研究中,使用基因组编辑技术生产了“非盛大的大米”,其用途是通过测量其户外培养,生物量和可溶性糖和淀粉含量来评估作为生物质和饲料作物的。 [材料和方法]具有栽培的水稻品种“ koshihikari”,这是一种双突变体(去除异国基因),florogen基因和㻴ニ㻟ニックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロック这种突变抑制了开花,但是通过自我产生异态性的个体,突变体系统得以维持。此外,使用该双重突变体在背景中,使用一种技术在茎和茎中涉及糖和淀粉代谢的技术创建了参与茎和叶中糖和淀粉代谢的基因的突变。在户外培养这些基因组编辑系统时,他们已提前向教育,文化,体育,科学和技术咨询,并提交了一项实验计划,以便接受它们。每个突变体的收获分为黄色成熟期(从㻟㻜㻜㻠㻜㻜㻜㻜㻜㻜㻜㻜です),这是普通饲料水稻品种的收获期,黄色成熟期后约几周。除了测量收获个体的干重外,还从代表性的分er中测量了每个器官中可溶性糖和淀粉的浓度,并估计每个器官的产量。此外,测量了整个收获个体的可溶性糖和淀粉的浓度,并计算每个个体的可溶性糖和淀粉的重量。 [结果和讨论]收集了每个菌株(゚㻩ン),并测量其干重,结果表明,在黄色成熟期间收获的koshihikari是㻟㻜±㻤㻌ランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドラ㻤㻌ランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドラ㻟㻜±㻤㻌ランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドラ-riptherore,黄色成熟期后收获的干重是㻣㻣±㻝㻌ラック㻝㻌ラック±㻝㻌ラック,并且对非透性突变剂的生物量显着增加。此外,根据代表性耕种器的每个器官的可溶性糖浓度计算估计的产率,结果表明,Koshihikari大约是㻜㻚㻠㻛ロックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセック的,另一方面,估计的淀粉产量大约是㻞㻚㻞㻌㻌㻌㻠ラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドライン进一步,目前正在测量每个菌株的溶剂糖和淀粉的重量。此外,我们将报道在不开放的菌株中涉及糖和淀粉代谢的基因中引入突变的菌株的分析结果。以上结果表明,非灌木菌株中生物量显着增加,茎和叶片中可溶性糖和淀粉的显着积累,表明不明显的koshihikari大米植物作为高生物量的水稻品种的有用性。此外,它被认为是饲料稻的非常有用的,因为它在喂养牛时不包含高度未消除的稻田。此外,为了实施“脸红的大米”血统,该公司还致力于开发技术,以选择不以种子表型为指标从单独群体中开花的个人。
Fonds de la Recherche Scientifique-FNRS (F.R.S.-FNRS) Belgium* Ministry of Science and Education (MSE) Croatia French National Research Agency (ANR) France Federal Ministry of Education and Research (BMBF) Germany German Research Foundation (DFG) Germany National Research, Development, and Innovation Office (NKFIH) Hungary Chief Scientist Office, Ministry of Health (CSO-MOH) Israel*意大利卫生部(IT MOH)意大利拉脱维亚科学委员会(LZP)拉脱维亚立大学拉脱维亚研究委员会(LMT)立陶宛挪威研究委员会(RCN)挪威国家研究与发展中心(NCBR)波兰高等教育,开发,发展,开发,开发,创新和创新资金(Uefiscdi)(UEFISCDI)
测量由4位考官Eran Kassif,T.W,A.M。和E.H.进行。使用腹部RM6C 2 - 6 MHz凸探针或阴道RIC 6 - 12MHz探针(均为探针,GE Healthcare),使用Voluson E10超声机(GE Healthcare)。从非vertex表现中的18周,使用了长达17周的妊娠17周的经阴道方法和腹部方法。为了获得标准化的图像,我们通过前fontanelle获得了胎儿大脑的中尺平面。图像被放大,以使胎头占据屏幕的70%。探针被倾斜,直到CC水平有清晰的边缘。测量了CC的前后长度。通过3个成像标准支持早期CC的识别:1)低技术结构的出现,2)跨越大脑的中线,以及3)位于脊髓骨动脉的下方,上方的tela tela tela choroidea(图1和在线视频1和在线视频1和2)。使用颜色多普勒超声检查证明了可质动脉。当颜色多普勒上可呈周围动脉不清或连续时,使用了缓慢的流动多普勒。我们进行了一项额外的试点研究,评估了CC测量的可重复性。五十九个胎儿的观察者内变异性评估了37个胎儿,用于观察者间的变异性。对于观察者内变异性,同一操作员对2个不同图像进行了2个测量。对于观察者间变异性,第二个操作员在新获得的图像上测量了CC长度。这已确定在出现后,我们与发现胎儿体积测量的患者联系了第五个百分点。
血清/血浆铁蛋白 BIO-AUT-SOP-307 血清/血浆叶酸 BIO-AUT-SOP-305 血清/血浆促卵泡激素 BIO-AUT-SOP-316 A 血清/血浆游离甲状腺素 BIO-AUT-SOP-302 A, B 血清/血浆游离三碘甲状腺原氨酸 BIO-AUT-SOP-311 A 血清/血浆γ-谷氨酰转肽酶
1 洛桑联邦理工学院 (EPFL),物理研究所,CH-1015 洛桑,瑞士 2 洛桑联邦理工学院 (EPFL) 量子科学与工程中心,CH-1015 洛桑,瑞士 3 马克斯普朗克物质结构与动力学研究所,自由电子激光科学中心 (CFEL),Luruper Chaussee 149,22761 汉堡,德国 4 牛津大学鲁道夫佩尔斯理论物理中心,牛津 OX1 3PU,英国 5 ISIS 设施,卢瑟福阿普尔顿实验室,哈威尔校区,迪德科特 OX11 0QX,英国 6 德克萨斯大学奥斯汀分校物理系 7 哥伦比亚国立大学超导和纳米技术组,物理系,哥伦比亚波哥大 8 苏黎世大学物理系,CH-8057 瑞士苏黎世
这种SCNT卵母细胞的人工激活导致细胞分裂和染色体分离为伪极性体,并以70%的效率下的二核原体。与正常二倍体(n = 46)数量相比,极性体和Zygotes中单个染色体的下一代测序表明,染色体的数量降低了近一半(n = 19)(n = 19)。同源对的全面测序表明,平均将23对同源对的一半(n = 11)正确分离为极体和合子,而剩余的染色体对保持在一起,导致了肾上变。未检测到体细胞同源物之间的重组证据。
过去二十年,凝聚态物理、核物理、引力和量子信息等多个原本毫不相关的学科之间出现了惊人的联系,这得益于实验的进步以及全息对偶带来的强大新理论方法。在这篇非技术性评论中,我们介绍了全息对偶与量子多体动力学相关的一些最新进展。这些包括对没有准粒子的强相关相及其传输特性、量子多体混沌和量子信息的扰乱的洞察。我们还讨论了使用量子信息理解全息对偶本身结构的最新进展,包括对偶的“局部”版本以及具有引力对偶的量子多体态的量子误差校正解释,以及这些概念如何有助于证明黑洞蒸发的幺正性。
