通过干燥胆汁固醇液晶(CLC)对纤维素纳米晶体(CNC)干燥胆汁脱脂液晶(CNC)产生的曲面表现出的波长和极化选择性的bragg反射,这使这些生物库的纳米颗粒极有效,许多光学应用都极有效。虽然传统产生的纤维是在浮出水面,但如果给出了球形曲率,则CLC衍生的螺旋CNC排列将获得新的强大功能。干燥的CNC悬浮液液滴不起作用,因为在各向异性胶体液滴中动力学停滞的发作会导致严重的屈曲和球形形状的丧失。在这里,通过在不可压缩油滴的球形微壳中确定CNC悬浮液可以避免这些问题。这可以防止屈曲,确保强螺旋螺距压缩,并产生具有独特可见颜色的单域胆固醇球形旋转式旋转颗粒。有趣的是,受约束的收缩会导致自发穿刺,使每个粒子都有一个单个孔,可以通过该孔提取内部油相进行回收。通过在不同的分数下混合两种不同的CNC类型,在整个可见光谱中调整了反射颜色。新方法添加了一种多功能工具,以寻求使用生物培养的CLC,从而使球形弯曲的颗粒具有相同的出色光学质量和光滑的表面,与以前仅获得的曲线相同。
1 俄勒冈州波特兰市俄勒冈健康与科学大学神经外科系;2 马萨诸塞州波士顿市麻省总医院神经内科系;3 马萨诸塞州波士顿市哈佛医学院;加利福尼亚州圣地亚哥市加利福尼亚大学神经外科系、电气与计算机工程系和神经内科系;6 韩国蔚山市蔚山国立科学技术研究所生物医学工程系;7 佛罗里达州迈阿密市尼克劳斯儿童医院神经外科系;8 加利福尼亚州拉霍亚市加利福尼亚大学圣地亚哥分校生殖科学与医学中心妇产科和生殖科学系;9 韩国首尔市崇实大学;10 韩国蔚山市蔚山国立科学技术研究所;11 俄勒冈州波特兰市俄勒冈健康与科学大学帕佩家庭儿科研究所;以及 12 加利福尼亚州帕洛阿尔托市斯坦福大学神经外科系
摘要:微阵列是过去二十年的开拓性技术之一,并且在生物学的所有相关领域都表现出了重要性。他们被广泛探索以筛选,识别和获得对生物分子(单独或复杂解决方案)特征性状的见解。A wide variety of biomolecule-based microarrays (DNA microarrays, protein microarrays, glycan microarrays, antibody microarrays, peptide microarrays, and aptamer microarrays) are either commercially available or fabricated in-house by researchers to explore diverse substrates, surface coating, immobilization techniques, and detection strategies.这篇评论的目的是探索自2018年以来的基于生物分子的微阵列应用程序的开发。在这里,我们涵盖了不同的印刷策略,底物表面修饰,生物分子固定策略,检测技术和基于生物分子的微阵列应用。2018 - 2022年期间着重于使用基于生物分子的微阵列识别生物标志物,病毒的检测,多种病原体的分化等。微阵列的一些潜在应用可能用于个性化医学,候选疫苗筛查,毒素筛查,病原体鉴定和翻译后修饰。
NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始致力于满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机理。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始致力于满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机理。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始致力于满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机理。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
NIST 的前身国家标准局 (NBS) 于 20 世纪 50 年代中期开始致力于满足新兴半导体行业的测量需求。虽然这项工作最初侧重于其他政府机构的晶体管应用,但在 20 世纪 60 年代初,该局向美国材料与试验协会 (ASTM) 和美国电子工业协会 (EIA) 寻求行业指导。ASTM 的首要任务是准确测量硅的电阻率。NBS 的科学家开发了一种实用的无损测量方法,其精度比以前的破坏性方法高出 10 倍。该方法是五种工业标准和广泛用于校准行业测量仪器的电阻率标准参考材料的基础。第二个项目由 EIA 专家小组推荐,旨在解决晶体管的“二次击穿”故障机理。该项目的成果得到了广泛应用,包括解决导致航天飞机发射延迟的主发动机控制问题。
与体内动物模型或传统细胞系统相比,MPS 应用于人类要晚得多。由于不同物种的生理学差异,来自动物的研究数据并不总是能转化为人类,而传统的人类体外模型缺乏三维性、组织-组织界面和机械线索,这会导致培养细胞去分化,从而降低与人类的相关性。尽管目前的 MPS 主要是探索性的,但制药和生物技术行业仍有兴趣采用该技术来提高人类的预测能力,其长期目标是最终尽可能取代动物模型。同时,学术团体和多家生物技术公司都在开发日益完善的 MPS 模型,以满足药物开发所需的需求和质量标准,例如可扩展性和稳健性。
完整作者列表: Martinez, Alina;科罗拉多大学博尔德分校,材料科学与工程项目 Cox, Lewis;蒙大拿州立大学博兹曼分校,机械与工业工程 Killgore, Jason;美国国家标准与技术研究所 Bongiardina, Nicholas;科罗拉多大学博尔德分校工程与应用科学学院,材料科学与工程 Riley, Russell;科罗拉多大学博尔德分校工程与应用科学学院,化学与生物工程 Bowman, Christopher;科罗拉多大学,化学与生物工程系
太赫兹 (THz) 时域光谱有助于深入了解半导体异质结构中的电子动力学。高场 THz 光谱探测 GaAs 量子阱 (QW) 系统的激子非线性响应,并能够在时域中测量其相干动力学。因此,THz 光谱可以让人们探索多体相互作用的基本特性以及半导体纳米器件技术的潜力。这项工作使用计算方法分析了半导体微腔中的光物质相互作用。当 QW 微腔中的激子与腔光子强耦合时,会形成一种称为激子极化子的新准粒子。本论文表明,具有光学和 THz 激发的经典耦合谐振子可用作模型来模拟激子极化子动力学及其量子相干现象。通过采用激子模式的时间相关衰减和改变光脉冲和 THz 脉冲之间的延迟,演示了激子-光子耦合系统的时间演化。由于强光物质杂化,在频谱中观察到正常模式分裂。最后,将本工作计算出的激子-极化子振荡与使用半导体布洛赫方程获得的参考计算结果进行了比较。