理解强自旋轨道耦合的窄带半导体中自旋极化载流子弛豫的基本散射过程,对于自旋电子学的未来应用至关重要。[1–8] 一个核心挑战是利用自旋轨道相互作用,在没有外部磁场的情况下实现高效的信息处理和存储。[6–12] 当表面或界面发生反转不对称时,或当自旋轨道相互作用存在于块体中时,可引起较大的拉什巴效应。[13–17] 结果,电子态的自旋简并度被提升,其自旋分裂变为 Δ E = 2 α R | k |,它一级线性依赖于动量| k |和拉什巴效应的强度,用所谓的拉什巴参数 α R 表示。 [18,19] 较大的 Rashba 效应被认为是实现增强自旋极化电流控制、[20,21] 高效自旋注入 [10,22] 和自旋电荷相互转换、[23–26] 较大自旋轨道扭矩、[5,27] 的关键。
我们制定了一种算法,仅从部分信息(例如少体可观测量可获得的信息)来确定量子多体态之间保真度的下限。我们的方法特别适用于置换不变态,但在所有对称性仅为部分对称性的情况下,它都会给出非平凡的结果。此属性使其特别适用于原子集合实验,其中相关的多体态可通过集体测量来认证。例如,我们表明,仅通过测量 N = 100 个粒子的 ξ2 ≈− 6 dB 自旋压缩态,即可以高达 F = 0.999 的保真度认证其极化和压缩正交。此外,我们还展示了如何定量考虑状态中的测量噪声和部分对称性,这使得我们的方法在实际的实验情况下很有用。
量子纠缠通常被认为是量子计算和量子模拟的核心资源。然而,由于缺乏足够可扩展和灵活的认证工具,在多体系统中检测量子纠缠的能力受到严重限制。这个问题在纠缠结构先验未知且不能依赖现有纠缠见证的情况下尤其关键。在这里,我们实施了一种方案,其中可以使用任意可观测量的平均值知识以可扩展、认证和系统的方式探测多体纠缠。具体而言,我们依赖于正半定条件,与基于部分转置的标准无关,如果数据可以通过可分离状态再现,则必须遵守这些条件。违反任何这些条件都会产生针对感兴趣数据的特定纠缠见证,从而揭示数据的显着特征,这些特征是无法在没有纠缠的情况下再现的。我们通过探测与现有实验相关的数百个量子比特的理论多体态来验证这种方法:一维 XX 链中的单粒子淬灭;具有 1 / r 3 相互作用的二维 XX 模型中的多体淬灭;以及海森堡和横向场伊辛链的热平衡态。在所有情况下,这些调查都使我们发现了新的纠缠见证,其中一些可以通过分析来表征,从而推广了文献中现有的结果。总之,我们的论文介绍了一种灵活的数据驱动纠缠检测技术,用于未表征的量子多体态,与量子优势机制中的实验直接相关。
纠缠 [1,2] 已成为量子计算和量子信息处理 [3,4] 任务的核心部分,例如量子隐形传态 [5,6,7,8]、密集编码 [9,10]、量子密码学 [11,12,13,14,15] 等。纠缠量子粒子之间的关联与经典关联完全不同,根据经典物理学 [1],这在实践中是不可能的。二体态的纠缠已经得到了广泛的研究。然而,多体纠缠 [16,17] 涉及两个以上子系统之间的纠缠,其结构要复杂得多。多体纠缠态在量子计算和量子信息处理任务中有着广泛的应用 [18,19]。此外,它们还与凝聚态物理 [ 20 ] 和量子引力 [ 21 ] 等各种物理学领域相关。在多体纠缠态类中,存在 W 态 [ 22 ],它因其对粒子丢失的鲁棒性而广受认可。W 态 [ 23 ] 的一般形式为:
过去二十年,凝聚态物理、核物理、引力和量子信息等多个原本毫不相关的学科之间出现了惊人的联系,这得益于实验的进步以及全息对偶带来的强大新理论方法。在这篇非技术性评论中,我们介绍了全息对偶与量子多体动力学相关的一些最新进展。这些包括对没有准粒子的强相关相及其传输特性、量子多体混沌和量子信息的扰乱的洞察。我们还讨论了使用量子信息理解全息对偶本身结构的最新进展,包括对偶的“局部”版本以及具有引力对偶的量子多体态的量子误差校正解释,以及这些概念如何有助于证明黑洞蒸发的幺正性。
来自生物质废弃物资源(如燕麦、稻壳、甘蔗渣、香蕉皮、花生壳、苹果渣和玉米芯)的硬碳因优异的可逆容量以及成本和可持续性考虑而受到广泛关注。[6–12] 生物质的天然微观结构在碳化后依然存在,提供大量缺陷和孔隙以及随机取向的伪石墨域。[13] 固有的通道和孔隙创建了相互连接的 3D 结构,改善了电解质的渗透并提供更多的钠通道和离子缓冲库。[14] 此外,一些剩余的杂原子(N、S、P 等)可以通过直接电化学活性共价键或通过引入产生电子受体态的碳空位缺陷来提供更多的储存位点。[15]
理解磁铁矿 (Fe3O4) — 一种强关联磁性氧化物 — 中的 Verwey 跃迁是一个百年老话题,由于最近的光谱研究揭示了它的轨道细节,它重新引起了人们的极大关注。这里报道了通过使用离子门控调整轨道配置来调制 Verwey 跃迁。在外延磁铁矿薄膜中,绝缘的 Verwey 态可以连续调整为金属态,表明低温三聚体态可以通过栅极诱导的氧空位和质子掺杂可控地金属化。离子门控还可以反转异常霍尔系数的符号,这表明金属化与具有竞争自旋的新型载流子的存在有关。与符号反转相关的可变自旋取向源于栅极诱导的氧空位驱动的结构扭曲。
我们给出了离散、连续和混合量子系统的真正三体纠缠的忠实几何图像。我们首先发现三角关系 E α i | jk ⩽ E α j | ik + E α k | ij 对所有亚可加二体纠缠测度 E 、所有 i 、 j 、 k 方下的排列、所有 α ∈ [0 , 1] 以及所有纯三体态都成立。然后,我们严格证明边 E α 包围的非钝角三角形面积(0 < α ⩽ 1 / 2)是真正三体纠缠的测度。最后,对于量子位,给定一组亚加性和非亚加性测度,总会发现某个状态违反任何 α > 1 的三角关系,并且三角形面积不是任何 α > 1 / 2 的测度,这一点得到了显著加强。我们的研究结果为在统一框架内研究离散和连续多体纠缠铺平了道路。
强关联过渡金属氧化物因其各种奇异现象而广为人知。稀土镍酸盐(如 LaNiO 3)就是一个典型例子,它们的电子、自旋和晶格自由度之间具有紧密的互连。将它们配对成混合异质结构可以进一步增强其特性,从而产生隐藏相和突发现象。一个重要的例子是 LaNiO 3 /LaTiO 3 超晶格,其中已经观察到从 LaTiO 3 到 LaNiO 3 的层间电子转移,从而导致高自旋状态。然而,迄今为止尚未观察到与这种高自旋状态相关的宏观磁序出现。本文利用 μ 子自旋旋转、X 射线吸收和共振非弹性 X 射线散射,直接证明了在 LaNiO 3 /LaTiO 3 界面上出现了具有高磁振子能量和交换相互作用的反铁磁序。由于磁性是纯界面性的,单个 LaNiO 3 /LaTiO 3 界面本质上可以表现为原子级薄的强关联准二维反铁磁体,有可能在先进的自旋电子器件中实现技术应用。此外,其强准二维磁关联、轨道极化平面配体空穴和分层超晶格设计使其电子、磁性和晶格结构类似于超导铜酸盐和镍酸盐的前体态,但具有 S → 1 自旋态。
AlGaN/GaN高电子迁移率晶体管(HEMT)或金属绝缘体半导体HEMT(MIS-HEMT),凭借优越的极化诱导高迁移率二维电子气(2DEG),因其高开关速度、低寄生参数和低导通电阻而受到广泛关注,并在高频射频和功率开关应用方面都取得了公认的成功[1-4]。通常在厚钝化电介质(如SiNx)上设置栅极和/或源极场板,以减轻栅极漏极区域的高电场并获得更高的击穿电压[5-7]。它们也有助于抑制表面态引入的电流崩塌[5,8]。然而,场板结构将引入额外的寄生电容,导致更高的VDS×IDS功率损耗和更长的开关持续时间。此外,钝化层还会引入钝化电介质/(Al)GaN界面态,甚至电介质本身的体态,它们的捕获/去捕获过程会引起寄生电容的动态漂移,导致实际应用中开关转换紊乱,dV/dt控制失效[9-11]。