作为中枢神经系统的常驻免疫细胞(CNS),小胶质细胞不断调查其微疫苗。1-4小胶质细胞永久扩展并缩回其过程不断改变其术语。这种细胞变化很快。例如,3-5分钟的全球缺氧可以产生明显的小胶质细胞形态改变。5在不同的皮质区域以及同一区域之间的小胶质细胞异质症,6使得很难在早期病理状况下可能会发生生理学和任何造成物质之间的形态差异。7,8除了它们在突触修剪中的作用9-12,其中形态学变化是其吞噬功能的一种结合,与炎症条件相比,CNS 13-15中小胶质细胞形态的生理变化动力学知之甚少。基本问题,例如,在整个生命周期中维持小胶质群的机械性是什么以及细胞增殖动力学是什么,但仍未得到答复。到目前为止,一般共识是在生理条件下,小胶质细胞的人口通过局部克隆膨胀来维持一生。16,17然而,一些研究表明,通过强烈的细胞增殖,在一个人的寿命18中逐渐恢复了几次,而没有循环的单核细胞/巨噬细胞浸润。19命中图研究假设,CNS募集的单核细胞衍生巨噬细胞可以在某些生理条件下区分小胶质细胞,并保留其独特的身份。20,21,在微神经胶质耗竭后,通过剩余的残留小胶质细胞进行重生,而不是通过外周巨噬细胞进行重生。22,23
体感皮层的皮层内微刺激 (ICMS) 可激活刺激电极周围的神经元并引发触觉。然而,目前尚不清楚皮层神经元的直接激活如何影响它们处理来自皮肤的其他触觉输入的能力。在左、右体感皮层均植入慢性微电极阵列的人体中,我们在同时提供 ICMS 的同时向皮肤施加机械振动,并量化机械和电刺激对触觉的影响。我们发现阈下 ICMS 增强了皮肤触摸的敏感度,证据是振动触觉检测阈值降低(中位数:-1.5 dB),但阈下振动不会系统性地影响 ICMS 的可检测性。超阈值振动导致 ICMS 阈值增加(中位数:2.4 dB),但超阈值 ICMS 对振动触觉阈值影响不大。 ICMS 引起的振动触觉敏感性增强与位置有关,刺激电极的投射场和振动刺激的位置距离越远,效果大小越小。这些结果表明,仅对皮质进行有针对性的微刺激就可以局部增强触觉敏感性,有可能恢复或加强受伤后保留的触觉。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2022 年 3 月 28 日发布。;https://doi.org/10.1101/2021.12.28.21268447 doi:medRxiv 预印本
保留所有权利。未经许可不得重复使用。预印本(未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此版本的版权所有者于 2021 年 12 月 31 日发布。;https://doi.org/10.1101/2021.12.28.21268447 doi:medRxiv 预印本
尽管有大量证据表明感觉运动皮层 (SMC) [ 1 ] 存在身体部位的表征,但对该脑区更详细的运动功能的映射仍然难以实现。虽然一些人报告说 SMC 中各个手指和发音器官的体感表征是有序的 [ 2 , 3 ],但另一些人表明这些身体部位具有重叠的神经表征 [ 4 , 5 ],这表明身体部位内表征缺乏离散的组织。通常用于研究大脑功能的成像技术 (例如 fMRI) 不能区分关键功能和非关键功能。因此,使用这些技术观察到的活动可能表示非必要的参与,例如运动计划或前馈/传出副本。相反,皮层的电刺激只能阐明对执行大脑功能至关重要的区域,因此可以单独研究运动表征。在这里,我们在一名神经外科患者的高密度 (HD) 皮层脑电图 (ECoG) 电极网格上应用了皮质刺激,以根据舌头的 ECoG 映射来研究 SMC 上运动功能的详细表现。
(!“#$”%&'%()#'*+),“ - +。“#+”)#/ 0“ 1)%$ 2”#$'&345*。+*,3“ ##*5,6)#。) div>- $)$“ 7#.6”%*。
收稿日期: 2024−10−19 修回日期: 2024−11−13 接受日期: 2024−11−18 DOI : 10.20078/j.eep.20241104 基金项目: 国家自然科学基金资助项目 ( 62218901 ) 第一作者: 孙俊强 ( 2000— ), 男 , 广东珠海人 , 硕士研究生 , 主要研究方向为磁性分子印迹技术。 E-mail : sjq@gzhu.edu.cn 通讯作者: 瞿芳术 ( 1984— ), 男 , 福建宁德人 , 教授 , 主要研究方向为膜法水处理技术。 E-mail : qufs@gzhu.edu.cn
体感皮层中的微刺激可以唤起人工触觉感知,并且可以整合到双向脑机接口 (BCI) 中,以在受伤或患病后恢复功能。然而,人们对刺激参数本身如何影响感知知之甚少。在这里,我们通过植入患有颈脊髓损伤的人类参与者的体感皮层中的微电极阵列进行刺激,并改变刺激幅度、持续时间和频率。增加幅度和持续时间会增加所有测试电极上的感知强度。令人惊讶的是,我们发现增加频率会在某些电极上引起更强烈的感知,但在大多数电极上引起的感知强度会降低。电极分为三组,它们会唤起不同的感知品质,这些品质取决于刺激频率并在皮层中进行空间组织。这些结果有助于我们不断加深对体感皮层结构和功能的理解,并将促进双向 BCI 刺激策略的原则性发展。
在本研究中,我们创建了一个具有两种刺激类型的 8 命令 P300 触觉 BCI,在经过少量改动的消费者盲文显示器上运行,并在 10 名盲人和 10 名视力正常者身上进行了测试。盲人受试者的准确率中位数比视力正常者高 27%(p < 0.05),证明盲人受试者不仅能够使用触觉 BCI,而且还能取得优于视力正常者的效果。具有最佳刺激类型的盲人组的准确率中位数达到了 95%。组间事件相关电位的差异位于刺激后 300 毫秒之前的额中部位点,与早期认知 ERP 成分相对应。盲人的 ERP 幅度更高、延迟更短。这个结果在不同触觉刺激的实验条件下都是一致的。盲人的分类表现与盲文阅读速度相关。这使得我们能够讨论视力丧失后感觉补偿过程中的可塑性变化机制及其对个人感知经验的依赖性。
3.与聋哑运动员的特别对话会 2023年聋哑足球世界锦标赛亚军成员冈田拓哉(埼玉县聋哑足球俱乐部、越谷FC)、中井健人(TDFC、LesPros Tokyo)、经理植松隼人 ★秘密嘉宾登场! !