•小,“基于透明的离子 - 凝胶电极和量子点颜色转换”的高度可变形的电致发光设备的明亮双方白光照明“(2024)•高级科学,“高级科学”,“日常生活中的导电水平的无缝集成:从准备式和可穿戴材料中的机械材料(2024年)(20224)(2024)•电动发光设备达到高街道性可容纳1400%”(2023年)•高级功能材料,“智能皮肤 - 粘合剂途径:从设计到生物医学应用”(2023)•化学工程杂志,“自粘合体热智能智能智能智能,用于自适应的材料在多样化的气候条件下进行自适应材料控制”(2022222222222) ”(〜2026)•科学技术部,“太阳能可持续使用研究中心”(〜2025)”(〜2023)
3.1黑色身体热目标标准,最小表面积为28.274平方英尺in。(6英寸dia。)验证IR摄像机的温度是必需的。黑色体热目标必须能够保持稳定温度为±0.35°C(±0.63°F),在35°C至500°C(95°F至932°F)的范围内,均匀性均匀±0.50°C(±0.90°F),在200°C(±0.90°F)上,在200°C(±0.90°F)(392°F)(392°C)(392)(3922) 0.95。平行工作表面具有相同高度,带有标记或夹具以对齐IR相机,将用于收集温度数据。黑体(热源)将设置为IR摄像头的3英尺距离。IR温度计或IR枪的距离是制造商指定的点比的距离。出于安全问题,可接受的距离比率至少为30英寸。
在单层FR-4样式的PCB上,焊接垫的大小是整体热量升压的主要贡献者。两层和4层PCB降低了热电阻。使用热vias是另一个不错的选择。在更高的功率设计中,有时会发现更昂贵的IMS基材。在所有这些设计中,总体热沉积较少依赖于非常大的焊料垫,而小型化是一种选择,并且可以增加功率散发。TSC还推出了2个新软件包-SMPC4.0和TO277A - 带有裸露的垫子。这些软件包为Diodes Inc和Vishay提供了第二来源。裸露的垫子可以大大帮助减少与消散功率相关的板空间。他们还通过降低RTHJ-l来减少TJ,从而提高可靠性。也是一个称为SOD123HE软件包的较小包装。
摘要 二硫化钼 (MoS 2 ) 等二维 (2D) 纳米材料由于其出色的非线性光学响应而引起了广泛关注。在本研究中,我们使用模式不匹配的泵探测配置研究了 MoS 2 纳米薄片分散体中的热透镜形成。观察泵浦和探测光束强度模式可以直观地了解光热透镜形成的时间演变。利用热透镜光谱技术研究了 MoS 2 纳米薄片浓度对分散体热光特性的影响。此外,还提出了一种基于热光折射的测量热透镜尺寸的技术。热透镜区域尺寸随泵浦功率的增加而增加。观察到的热透镜调制被用于演示“常开”全光开关,该开关显示出泵浦光束对输出光束信号的出色调制。
传统的地热能以蒸汽的形式和地球表面下方的非常热的水的形式发现,深度为几英尺至几英里。这些液体热的储层可以被挖掘并带到表面以发电。钻探和恢复技术的最新进展是针对非常规的石油和天然气提取的开创性的,这为非常规地热能生产的未来铺平了道路,也称为地热的任何地方(GA),涉及在地球深地下的热岩石深处挖掘热量的热量。一份2023年的报告,标题为“德克萨斯州地热的未来 - 当代的前景和观点”,其中包括一张地图,该地图强调了Presidio County是该州一些最热门岩石的地区之一。根据该报告,Presidio市政发展区(PMDD)在UT-Austin的经济地质局(BEG)聘请了Ken Wisian博士及其团队,对该县的地热潜力进行了评估,该潜能最近完成了。
摘要:慢性阻塞性肺疾病(COPD)包括慢性支气管炎、肺气肿、小气道阻塞等,不完全可逆性的气流受限、炎症、过多的黏液分泌及支气管黏膜上皮病变是该病的主要病理基础。COPD在世界范围内的患病率日益上升,给个人和社会造成了沉重的负担。本文对COPD的发病机制进行综述,阐明最新靶向药物对COPD的作用及机制,重点研究NOD样受体热蛋白结构域相关蛋白3炎症小体(NLRP3炎症小体)。NLRP3可促进白细胞介素-1β(IL-1β)和白细胞介素-18(IL-18)的产生,NLRP3是巨噬细胞和中性粒细胞迁移聚集及氧化应激产生的重要因素。抑制NLRP3炎症小体可间接阻断IL-1β和IL-18的炎症作用,有望成为COPD治疗的理想靶点。关键词:慢性阻塞性肺疾病,发病机制,靶向药物,NLRP3
• 压接、拧紧和穿刺电连接器 • 电气箱、外壳和遮蔽物 • 架空线路阻尼系统(防振) • 野生动物和人类生命保护系统 • 个人防护和安全设备 • 安装工具 • 与智能电网、物联网 (IoT) 产品和印刷电路板 (PCB) 相关的电连接器 为了优化其工程工作流程,Sicame 集团大约七年前开始整合 Ansys 仿真。如今,该集团应用 Ansys 多物理场仿真来分析各种工程动力学,从结构和气流到冲击和振动。 “当我向我的经理和高层管理人员提出时,主要目标(整合 Ansys 多物理场仿真)是制定相同的测试,该测试在我们的 Cofrac 实验室中进行,”Sicame 集团数字仿真主管 Guillaume Morin 说。“这些测试结合了热、机械和电气行为。此外,这些物理特性是相互结合的。这是提高我们对数字工程的理解以实现这一宏伟目标的主要原因。”流体热耦合分析-ANSYS Discovery
元素金属薄膜在现代电子纳米器件中起着非常重要的作用,可用作传导通路、间隔层、自旋电流发生器/探测器以及许多其他重要功能。在这项工作中,通过利用固体金属有机源前体的化学性质,我们展示了元素 Ir 和 Ru 金属薄膜的分子束外延合成。当金属有机前体在基底表面分解时,通过对金属相的热力学和动力学选择,可以合成这些金属。采用原位和非原位结构和成分表征技术相结合的方式,研究了不同条件下的薄膜生长。在前体吸附、分解和晶体生长的背景下,讨论了基底温度、氧反应性和前体通量在调整薄膜成分和质量方面的重要作用。计算热力学将金属或氧化物形成的驱动力量化为合成条件和化学势变化的函数。这些结果表明,体热力学是低温下 Ir 金属形成的合理原因,而 Ru 金属的形成可能是由动力学介导的。
本博士论文的主要目的是介绍作者为 PROOSIS 标准组件库 (SCLib) 开发的燃气轮机组件的高级性能仿真模型和高级流体建模功能。这项研究的主要目的是深入了解解离对流体热力学性质以及随后对燃气轮机性能的影响。详细描述了作为 PROOSIS 标准组件库基础的高级流体模型和稳健流动连续性模型的开发。借助几个案例研究,讨论了解离对孤立燃烧器和加力燃烧器组件以及整体发动机性能的影响。此外,还介绍了燃烧器和加力燃烧器组件的高级性能仿真模型。还分析了压缩机特性的扩展参数表示的开发。还介绍了 PROOSIS 的几种高级功能(包括测试分析、客户甲板生成、3D 压缩机缩放和分布式计算)。 “PROOSIS 的演变”通过深入分析 VIVACE-ECP 的协作结构和项目管理以及沟通渠道、技术转让和质量控制来呈现。明确强调了作者对每一项任务以及随后对整个“VIVACE-ECP”的贡献。
