用于汽车和航空航天工程中使用的食品,药品和电子包装以及金属聚合物接头,在界面上的水分吸附在长期的关节性能中起着重要作用。[3,4]这是因为固定的层状结构有助于显着降低小分子的扩散速率,例如氧气和水分,由于其独特的结构,具有紧密堆积的聚合物链,并具有垂直于底物的紧密堆积的聚合物链。目前将固定层状结构结构的形成理解为受到封闭的结晶的结果。[5]已经报道了两种类型的封闭结晶。在发生微相聚合物或聚合物混合物中发生微相聚合物时发现了第一种类型。当每个组分的结晶温度(T C)不同时,具有较高T C的组分首先结晶并形成其他聚合物的纳米或微观限制。因此,较低T C的分量在限制下结晶。[6]在超薄膜中发现了第二种粘附的结晶,来自稀聚合物溶液或聚合物熔体。[7]在各种晶体聚体中发现了这种层状晶体结构,例如聚(乙烯基氟化物),聚乙烷氧化物),聚(3-羟基丁酸)和聚(L-乳酸)。在我们的上一篇论文中,关于聚合物间相结构对半石化热塑性和金属之间粘附的影响,我们表明可以在聚合物 - 金属中的相互之间找到层状结构。[8]尽管形成这些层状Crys-talline结构的CRYS级数机制,例如,关于生长取向的结构,仍然不太了解,但纳米级限制(含量很少的纳米量)被认为是这些层状结构结构的关键。[9]层状结构的形成对金属心皮界面的断裂行为有重大影响,这在例如从模具表面释放热塑性塑料至关重要。这些结果表明,层状结构可能形成,而无需上述纳米级。在本文中,进一步研究了聚合物中的层状结构,以进行各种半晶体热塑料和不同的底物材料。还使用硅
*** 南卡希亚斯大学 (UCS),Campus Sede,R. Francisco Getúlio Vargas,1130 - Petrópolis,RS **** 圣保罗州立大学 (UNESP) 工程学院材料与技术系、疲劳与航空材料研究组,瓜拉廷格塔,SP,巴西 ✉ 通讯作者:Heitor L. Ornaghi Jr.,ornaghijr.heitor@gmail.com 2020 年 6 月 15 日收到 木质生物质因其成本低、可再生和环境友好而成为生产生物能源的化石燃料的替代品。为了将生物质用作能源,强烈建议了解其热降解行为。这项工作重点研究了巴西木材行业常用的不同树种(湿地松 (PIE)、大桉 (EUG) 和伊塔乌巴 (ITA))的木纤维的热降解。使用 F 检验统计工具,基于最常见的理论数据预测了它们的降解动力学和整体热行为。发现最可能的降解机制是所有测试的木纤维的自催化,具有三个不同的降解步骤。获得的结果与最近在文献中使用其他拟合方法报告的结果一致。发现纤维素是阿伦尼乌斯参数的主要贡献者,而半纤维素是反应级数的主要贡献者。关键词:建模和仿真、木纤维、热分解、热解、模型拟合引言根据欧盟 28 国 (EU-28) 的政策,预计生物能源(包括生物热能、运输用生物燃料和生物电能)将贡献 2021 年可再生能源目标的一半。相比之下,2015 年,生物能源消耗量是 2000 年石油消耗量的两倍多。1 全球使用的森林生物质的一次能源供应量估计约为 56 EJ,这意味着根据世界能源理事会的数据,木质生物质占每年供应的所有能源的 10% 以上,2 每年约 90% 的一次能源来自所有形式的生物质。3 因此,考虑到木材固有的可再生性,木质生物质和木材加工残留物对于满足未来的能源需求至关重要,尽管可持续管理森林资源势在必行。
