由于非热微/纳米级声子群,热传输超过体积热传导 Vazrik Chiloyan a , Samuel Huberman a , Alexei A. Maznev b , Keith A. Nelson b , Gang Chen a * 1 a 麻省理工学院机械工程系,美国马萨诸塞州剑桥 02139 b 麻省理工学院化学系,美国马萨诸塞州剑桥 02139 虽然经典的尺寸效应通常会导致有效热导率降低,但我们在此报告
空间电力推进 (EP) 技术的推力致密化对于实现未来雄心勃勃的太空任务和探索(例如载人火星任务)必不可少。EP 致密化主要受限于推进器材料承受极端等离子体条件的能力。本研究调查了最大化电流增强的相互关联的动力学、随后的溅射和电弧腐蚀挑战,以及一类有前途的新型先进材料——体积复合材料 (VCM) 对空间电力推进系统的影响。与标准材料相比,VCM 表现出增强的管理高水平等离子体能量和电流的能力,这主要归功于几何捕获和等离子体注入等原理的综合优势。研究了 VCM 中的能量管理和溅射剂传输机制,以深入了解最佳 VCM 几何形状,并探索利用先进增材制造方法的潜力。还通过耦合计算和实验分析确定了 VCM 电弧响应和有利的升华腐蚀特性。这一发现强调了 VCM 具有彻底改变与 EP 相关的面向等离子体应用的材料设计的潜力,为更耐用、更高效的推进系统铺平了道路。
摘要:目的:进行系统审查,评估在正畸剥离和清理程序后发生的定量搪瓷损失。材料和方法:遵循系统搜索的系统搜索,遵循用于系统评价和荟萃分析的首选报告项目(PRISMA)陈述在不同的数据库(Embase,Medline,Scopus,Scopus,Scopus,Science Web)上进行的论文,用于研究由于支架和清晰的静态器附件削减额定轴承膜而造成的体积搪瓷损失和/或清洁程序。包括在2022年7月16日使用英语发表的体内和体外文章的研究。然后由两位独立筛选摘要的作者进行研究选择。结果:在421个筛选摘要中,选择了41篇文章进行全文分析。最后,本综述包括了九项研究。没有检索体内纸。在体外论文研究了由于去除金属支架(n = 7),陶瓷支架(n = 1)和两者(n = 1)而引起的体积损失。所有调查的清理程序各不相同。在基线和拆卸/清理后的印象被叠加,并使用不同的3D数字分析软件减去量。在所有纳入的研究中,牙釉质的体积损失范围为0.02±0.01 mm 3至0.61±0.51 mm 3。结论:剥离和清理程序会产生搪瓷损失。能够导致最小搪瓷量损失的剥离/清理程序尚未确定。
对非工业化环境中的脑衰老或痴呆症知之甚少,这些环境与人类在整个进化史中的生活相似。本文研究了两个南美土著人口Tsimane和Moseten的中年和老年大脑体积(BV),其生活方式和环境与高收入国家的生活方式和环境不同。有1,165个年龄在40至94岁的人的样本,我们分析了BV随年龄的BV下降率的人口差异。我们还评估了BV与能量生物标志物和动脉疾病的关系,并将其与工业化环境中的发现进行比较。分析测试从大脑健康的进化模型得出的三个假设,我们称之为财富的尴尬(EOR)。该模型假设食物能量与后期,食物限制的过去与后期的BV呈正相关,但是现在和年龄段的工业社会中的BV降低了体重和肥胖。我们发现,BV与非HDL胆固醇和体重指数的关系是曲线的,从最低值到平均值高于1.4至1.6 SD,而从该值到最高值。培养的Moseten随着年龄的年龄的增长而比Tsimane表现出更大的降低,但仍然比我们和欧洲人口浅。最后,主动脉粥样硬化与较低的BV有关。与美国和欧洲的发现相辅相成,我们的结果与EOR模型一致,对改善大脑健康的干预措施的影响。
增材制造 (AM) 可以制造出传统制造方法无法实现或不经济的复杂结构。其独特的功能推动了多种打印技术的出现,并引发了对材料采用的广泛研究,特别是铁基、钛基和镍基合金。同时,铝作为一种轻质结构材料,其凝固范围大、反射率高,大大降低了铝与 AM 的兼容性。不兼容性的根源在于铝在 AM 的快速循环热条件下的不稳定行为及其与激光的相互作用较差。这阻碍了基于激光的铝 AM 的发展,并加剧了目前中温范围内轻质结构材料的缺乏。铝基复合材料 (AMC) 具有作为热稳定轻质结构材料的巨大潜力,结合了铝基体的轻质特性和增强相的强度。然而,AMC 的制造主要采用传统方法,仅实现中等体积分数的增强,同时与 AM 相比零件复杂性有限。为了应对这些挑战,原位反应打印 (IRP) 作为一种新型 AM 方法被采用,利用不同元素粉末混合物的反应产物来制造具有超高体积分数金属间增强体的 AMC。在本研究中,系统地研究了钛添加到元素铝原料粉末中对材料加工性、微观结构特征和力学性能等不同方面的影响。结果表明,与现有的 AM 铝合金和其他 AMC 相比,IRP 可以克服 AM 与铝之间的不兼容性,并生产出具有特殊体积分数增强体和出色刚度增强的 AMC。
在本文中,我们提出了一种目前使用最广泛的量子计算硬件度量标准(称为量子体积 [1,2])的概括。量子体积指定了一组随机测试电路,这些电路的逻辑电路深度等于计算中使用的量子比特总数。然而,这种方形电路形状与人们可能希望使用量子计算机的许多特定应用并不直接相关。在对已知量子算法的可用资源估计调查的基础上,我们根据逻辑电路深度(时间)随问题大小(量子比特数)的缩放行为,将量子体积概括为少数几种代表性电路形状,我们称之为量子体积类。作为一项技术,量子计算尚处于起步阶段,但发展迅速。在短期内,噪声和中等规模量子 (NISQ) 系统可能对特定的小众应用有用 [3]。从长远来看,随着容错 (FT) 系统的发展,这项技术有望带来极大的颠覆性和变革性。评估这项技术的明确指标是
经前烦恼障碍(PMDD)是一种情绪障碍,已证明选择性孕激素受体模型(SPRM)治疗已被证明是有益的。到目前为止,这种治疗的神经特征已被确定为对挑衅的积极反应期间的额额分子反应性更大,但没有变化的灰质结构变化。白质最近发现PMDD患者和健康对照患者之间有所不同。因此,本研究试图研究PMDD患者的白质体积与SPRM治疗之间的关系。对参与随机对照试验的PMDD患者进行了一项药物神经影像学研究。参与者在处理与醋酸乌蛋白葡萄酸盐(SPRM)或安慰剂的处理前后进行了磁共振成像,持续了三个月。评估了按时间处理对白质体积(WMV)的相互作用效果。基于体素的形态计算分析均在整个大脑探索性水平和感兴趣的区域进行。在任何区域中均未观察到对WMV的治疗效果,包括前丘脑前辐射,扣带,镊子小辅助,福尼克斯,下额肌枕骨下肌,小脑梗梗,上等纵向肌张力肌和fasciculus。这是第一个发现,表明三个月pro生存的拮抗作用没有白质体积改变,这表明白质体积在PMDD的SPRM治疗后没有参与症状缓解。
方法和结果:明显地分析了严重的胎儿先天性心脏病的96个术语单例怀孕的胎盘,以分析宏观和微观病理学。我们应用了胎盘病理严重程度评分,将胎盘异常与神经系统结果联系起来。产后,前磁共振成像用于分析脑体积,旋转和脑损伤。胎盘分析显示以下异常:孕妇血管不良灌注病变为46%,红细胞成核的37%,慢性炎性病变为35%,30%的成熟延迟,胎盘体重在28%以下的胎盘重量低于10%。胎盘病理学的严重程度与皮质灰质,深灰质,脑干,小脑和总脑体积负相关(r = -0.25至-0.31,所有p <0.05)。在线性回归中校正磁共振成像处的月经后年龄时,该关联对于皮质灰质,小脑和总脑体积仍然很重要(调整后的R 2 = 0.25-0.47,所有P <0.05)。
— — 在抑郁症患者中,这一比例一直显著降低 4-12 — — 但影响的大小是可变的,似乎取决于年龄、抑郁发作次数和患病持续时间、7,12 缓解状态 5,10 和侧性。6-8 此外,越来越多的证据表明,一些药物治疗可能有助于防止体积减少 11,13-16,这进一步增加了这些发现的可变性。抑郁症不是一种单一的疾病,与其他精神疾病(最明显的是焦虑症 2,17 )的共病本质上给研究带来了可变性。焦虑症是第二大最常见的精神疾病,1,2 抑郁症与焦虑症共病与较差的健康结果有关,包括更严重的症状和更高的自杀意念水平。18 鉴于共病率
玻璃中飞秒(FS)激光诱导的修饰的种类铺平了通过激光脉冲能的非线性吸收引发的多种结构变化的道路。光眼镜中这些修饰的性质根据激光写参数而变化,并且在文献中将其分为三种主要类型[1]。I型修饰可以观察到较低能量处的折射率的平滑和均匀变化。早期研究表明,FS激光器在硅玻璃中诱导3D折射率分析的潜力,这是创建波导的基础步骤[2]。II型修饰是通过折射率的各向异性变化来区分的。在特定的脉冲持续时间,频率和能量条件下,出现了强烈的双折射,它起源于垂直于激光极化的定期层状纳米结构[3]。在较高的激光强度下,发生了III型修饰,这是由于局部微探索而形成的纳米/微粒子具有致密壳的形成。是II型修饰,与纳米的形成有关。fs激光诱导的纳米射流在几个技术域中发现了广泛的应用。它们在创建长期光学数据存储设备[4,5],热光传感器[6,7]和微流体[8,9]中起着核心作用。重要的是,它们还用于制造各种光学元件,包括波导,光层转化器[10,11]和其他双重元素[12]。尽管其应用的范围很广,但对玻璃中纳米形成背后的机制的全面理解仍有待实现。这是至关重要的,因为它会影响他们的制造,因此在各种技术环境中优化了它们的使用。纳米形成过程的中心是多光子电离的现象,其中光子吸收促进了从入射光到实心玻璃结构的能量转移[13]。由于激光强度超过特定的阈值,它会导致血浆的产生,其特征是高密度自由电子云[14]。入射激光与不均匀性的散射光之间的干扰