胎儿MRI广泛用于定量脑容量研究。但是,目前,缺乏普遍接受的胎儿脑部分割和分割方案。已发表的临床研究倾向于使用不同的策略方法,据报道,这些方法也需要大量耗时的手动精炼。在这项工作中,我们建议通过为3D T2W运动校正大脑图像开发新的强大深度学习胎儿脑分割管道来应对这一挑战。首先,我们使用发展中的人类连接项目的新胎儿脑MRI ATLAS定义了一种新的精制脑组织拟合方案,该方案使用了19个区域。该方案设计是基于组织学大脑图谱的证据,单个受试者3D T2W图像中结构的清晰可见性以及与定量研究的临床相关性。随后,它用作开发自动化深度学习的脑组织拟层管道,该管道在360个胎儿MRI数据集中训练有不同的获取参数,并使用半监督的方法和手动精制的标签从ATLAS中传播。管道在不同的采集方案和GA范围内证明了强大的性能。分析390名正常参与者的组织体积(妊娠年龄范围21-38周),并用三种不同的采集方案进行扫描,并未揭示生长图中主要结构的显着差异。在<15%的病例中仅存在小错误,因此显着减少了手动细化的需求。此外,有65例室性肿瘤和60例正常对照病例之间的定量比较与基于手动分割的早期工作中报道的发现一致。这些初步结果支持拟议的基于ATLAS的深度学习方法的可行性,以进行大规模体积分析。创建的胎儿脑体积百分比和带有拟议管道的Docker将在手稿出版后在线公开获得。
背景:运动神经元疾病(MNDS)是以运动障碍和非运动症状为特征的进行性神经退行性疾病。丘脑在MND中的参与,尤其是在肌萎缩性侧索硬化症(ALS)等条件下,以及其与额颞痴呆(FTD)的相互作用增强了研究的兴趣。这项系统评价分析了磁共振成像(MRI)研究,该研究的重点是MND的丘脑变化,以了解这些变化的重要性及其与临床结果的相关性。方法:遵循PRISMA 2020指南,从成立到2023年6月,搜索了PubMed和Scopus数据库,以了解与MND患者丘脑中MRI发现有关的研究。合格的研究包括诊断为接受ALS或其他形式的MND的成年患者,这些患者接受了大脑MRI,其结果与丘脑的改变有关。使用纽卡斯尔 - 奥塔瓦量表对偏见的风险进行了评估。结果:共有52项研究(包括3009名MND患者和2181个健康对照)使用了各种MRI技术,包括体积分析,扩散张量成像和功能性MRI,以测量丘脑量,连接性,连接性和其他变化。这篇综述证实了MND的重大变化,例如萎缩和微结构降解,这与疾病的严重程度,进展和功能障碍有关。丘脑的参与因不同的MND亚型而异,并且受认知障碍和突变(包括9号染色体开放式阅读框架72(C9orf72))中的认知障碍和突变的影响。跨研究的发现的综合表明,丘脑病理是MND的普遍生物标志物,有助于运动和认知缺陷。丘脑是监测的有希望的目标,因为其功能障碍是MND中各种临床症状的基础。结论:丘脑改变为MND的病理生理学和进展提供了宝贵的见解。多模式MRI技术是检测动态丘脑变化的有效工具,表明结构完整性,连通性破坏和代谢活性。
目的:这项研究旨在开发一种新的卷积神经网络深度学习(DL)技术,用于从计算机上进行自动化的脑组织分割(CT)扫描,并与磁共振成像(MRI)分割相比评估其性能。材料和方法:这项多中心回顾性研究收集了来自两个机构的199个健康个体的配对CT和MRI数据。将数据分为一个训练集(n = 100)和一个机构的内部测试集(n = 50),其中第二个机构的附加数据集(n = 49)用于外部验证。灰质(GM),白质(WM)和脑脊液(CSF)的地面真相面膜是从T1加权MR图像中赋予的。为三个大脑区域中的每个区域中的每个区域训练了基于U-NET的DL模型,并根据VGG19计算了感知损失。通过计算连续骰子系数(CDICE),联合会(IOU)和第95个百分位数Hausdorff距离(HD95)来评估模型性能。使用定位系数(R 2),类内相关系数(ICC)和Bland-Altman分析,将基于CT的分割的体积估计与MRI衍生体积进行了比较。结果:接受感知损失的DL网络与未经感知损失的训练相比,表现出色。体积分析表明,在内部/外部测试中,GM和WM分别为r 2 = 0.83/0.90和0.85/0.87之间的MRI衍生地面真相与基于CT的分割之间的一致性是r 2 = 0.83/0.90和0.85/0.87,而ICC = 0.91/0.94和0.92/0.93。在内部测试中,评估得分(没有感知损失与感知损失)为:CDICE = 0.717 vs. 0.765,HD95 = 6.641 mm,gm中的6.641 mm vs. 6.314 mm; CDICE = 0.730 vs. 0.767和HD95 = 5.841毫米,而Wm为5.644 mm; CDICE = 0.600 vs. 0.630和HD95 = 5.641毫米,而CSF中的5.362 mm,分别是分数。结论:提出的DL方法随着感知损失而增强,可改善CT图像的脑部分割。这种方法显示了有望作为基于MRI的分割的一种替代方法。
北美放射学会(RSNA)致力于通过教育和研究致力于卓越的患者护理。•痴呆症包括一组疾病,这些疾病会导致记忆,语言,视觉空间感知,注意力和行为等领域的认知缺陷。大多数是由进行性神经退行性疾病引起的,并导致严重的残疾。痴呆症在运营上是由多个认知领域的缺陷来定义的,以干扰日常生活的功能活动。由于它们的阴险发作,早期阶段的不同痴呆综合症的相似性以及将早期痴呆症与正常衰老变化和临床评估的变化区分开的困难,痴呆症的诊断通常具有挑战性。•最常见的神经退行性疾病是阿尔茨海默氏病,刘易体内痴呆和额颞叶变性。脑血管疾病虽然不是痴呆症的常见唯一原因,但是仅次于阿尔茨海默氏病的第二常见合并症。随着人口年龄的增长,阿尔茨海默氏病的患病率是最常见的神经退行性疾病。大多数患有痴呆症诊断的老年人都有混合痴呆症模式,具有多种尸体训练,最常见的是阿尔茨海默氏病与脑血管疾病和/或Lewy身体疾病的组合。•可以使用准确的诊断来量身定制适当的护理,包括支持性护理,并为患者,家庭和护理人员提供生活计划。评估受影响患者的血液亲戚也很有用,因为遗传可能在某些神经退行性疾病(例如阿尔茨海默氏病)的发展中发挥作用。•由于具有磁共振成像(MRI)的结构性脑成像可以识别出一些不常见但可能导致认知能力下降的可能治疗状况,因此大多数实践指南都包括对接受认知投诉评估的患者进行的成像。对高分辨率结构MRI的定量,体积分析可能具有诊断和分期的实用性,并分布了阿尔茨海默氏病和其他神经退行性疾病的严重程度。•脑FDG-PET和淀粉样蛋白PET成像可能对选定的痴呆患者有帮助。成像包括淀粉样蛋白PET和MRI,当考虑使用新的或研究药物的治疗和治疗计划时,还起着重要作用。核医学与分子成像协会和阿尔茨海默氏症协会的建议,不应将脑宠物用作筛查检查。•如果禁忌MRI,则可以将计算机断层扫描(CT)视为替代方案,但没有相同的诊断实用程序来评估痴呆症,尤其是快速进行性痴呆。•为了改善患者的健康和安全性,应始终采取适当的预防措施,以最大程度地减少辐射暴露,并使用“尽可能低的(Alara)原则”。
机械工程工程数学线性代数:矩阵代数,线性方程系统,特征值和特征向量。微积分:单个变量,极限,连续性和不同性,平均值定理,不确定形式的功能;评估确定和不当积分;双重和三个积分;部分衍生物,总导数,泰勒序列(一个和两个变量),最大值和最小值,傅立叶序列;梯度,差异和卷曲,矢量身份,方向衍生物,线,表面和体积积分,高斯的应用,Stokes和Green定理。微分方程:一阶方程(线性和非线性);具有恒定系数的高阶线性微分方程; Euler-Cauchy方程;初始和边界价值问题;拉普拉斯转变;热,波和拉普拉斯方程的解决方案。复杂变量:分析函数; Cauchy-Riemann方程;库奇的整体定理和整体公式;泰勒和洛朗系列。概率和统计:概率的定义,采样定理,条件概率;卑鄙,中位数,模式和标准偏差;随机变量,二项式,泊松和正常分布。数值方法:线性和非线性代数方程的数值解;通过梯形和辛普森的规则进行集成;微分方程的单步和多步法。应用力学和设计工程机制:自由图和平衡;摩擦及其应用,包括滚动摩擦,Belt-Pulley,刹车,离合器,螺丝千斤顶,楔子,车辆等。;桁架和框架;虚拟工作;平面运动中刚体的运动学和动力学;冲动和动量(线性和角度)以及能量配方;拉格朗日方程。材料力学:应力和应变,弹性常数,泊松比; Mohr的圆圈,用于平面应力和平面应变;薄缸;剪切力和弯矩图;弯曲和剪切应力;剪切中心的概念;梁的挠度;圆形轴的扭转;欧拉的专栏理论;能量方法;热应力;应变仪和玫瑰花结;通过通用测试机对材料进行测试;测试硬度和影响力。机器理论:平面机制的位移,速度和加速度分析;链接的动态分析;凸轮;齿轮和齿轮火车;飞轮和州长;往复和旋转质量的平衡;陀螺仪。振动:单个自由系统的自由和强迫振动,阻尼的效果;振动隔离;谐振;轴的关键速度。机器设计:用于静态和动态加载的设计;失败理论;疲劳强度和S-N图;机器元素的设计原理,例如螺栓,铆接和焊接接头;轴,齿轮,滚动和滑动接触轴承,刹车和离合器,弹簧。流体力学和热科学流体力学:流体特性;流体静态,淹没物体的力,浮动物体的稳定性;质量,动量和能量的控制体积分析;流体加速度;连续性和动量的微分方程;伯努利方程;维度分析;不可压缩的流体,边界层,基本湍流,流过管道,管道损失,弯曲和配件的粘性流动;可压缩流体流量的基础。传热:传热模式;一维热传导,抗性概念和电类比喻,通过鳍的传热;不稳定的热传导,集总参数系统,Heisler的图表;热边界层,自由和强制对流传热中的无量纲参数,扁平板上流动和通过管道的传热相关性,湍流的影响;热交换器性能,LMTD和NTU方法;辐射传热,Stefanboltzmann定律,WIEN的位移定律,黑色和灰色表面,视图因素,辐射网络分析热力学:热力学系统和过程;纯物质的特性,理想和真实气体的行为;零和热力学的第一定律,在各种过程中的工作和热量计算;热力学的第二定律;热力学特性图表和表,可用性和不可逆性;热力学关系。