超短激光脉冲是诱导材料改性的有力工具 1–4。特别是在透明电介质中,超短激光脉冲可用于局部修改材料块内的化学结构、折射率、色心密度,光聚合,产生纳米光栅、表面纳米结构或内部空隙。大量应用领域受益于基础性进步:外科和生物医学应用、光子学、微流体学、高速激光制造 2,5–7。将这些应用推进到纳米结构需要数值建模的支持 8。在激光诱导的强场下,束缚电子从价带跃迁到导带 1,9,10,在价带中留下一个空穴。电子-空穴等离子体的粒子在激光场中被加速,通过碰撞电离导致自由载流子密度倍增,并可能产生致密的电子-空穴等离子体。最后,在远大于几皮秒的时间尺度上,材料内部发生热和结构事件 1 。我们的模型侧重于等离子体密度的积累,时间尺度可达几皮秒。已经开发了大量不同的模型来研究超短激光脉冲(约 100 fs)在高强度范围内(约 10 14 W/cm 2 )在介电体中的传播以及随后的电离。这些模型可分为两类。第一类是几种
▪ 捐献期间或捐献准备期间发生的严重事件(包括与为即将进行的捐献而给予患者药品的管理有关的事件); ▪ ATMP 疑似受到病毒、细菌或其他污染; ▪ ATMP 管理期间发生的严重事件(例如,在需要使用移植产品的手术或注射期间); ▪ 可能与 ATMP 或其成分(防腐剂、培养基、病毒载体等)或作为产品组成部分的医疗器械或基质的质量缺陷有关的严重事件; ▪ ATMP“不合格” (OOS) 批次的异常放行(《先进治疗药物良好生产规范指南》作为 EudraLex 第 4 卷新的第 IV 部分)。 ▪ 由转基因生物 (GMO) 组成或含有 GMO 的药品释放到环境中、传播给其他人或动物。
多性疾病Vera(PV)是一种慢性骨髓增生性新血浆(MPN),其特征是红细胞过量。超过95%的PV患者疾病是由JAK2 V617F突变驱动的。虽然JAK2 V617F突变小鼠模型为PV生物学提供了机械见解,但这些模型中的大多数呈现出比在PV患者中发现的JAK2 V617F的变体等位基因频率(VAF)高得多的突变细胞负担。因此,当前的PV小鼠模型对PV DE Velopment的最早阶段的了解有限,包括疾病表现所需的最小突变细胞负担是什么。为了避免这些局限性,我们开发了一种使用CRISPR/CAS9同源指导修复(HDR)的PV的工程模型,以使JAK2 V6717F突变突变到人类CD34 +细胞的内源性基因座。Xenograftage靶向细胞进入NSGS小鼠,在体内概括了人类PV病理。我们使用此工具来解决两个问题:(i)生成PV病理所需的最小突变体VAF是什么,并且(ii)起源细胞的发育环境会影响MPN的疾病轨迹。该模型提供了一种有价值的临床前工具,可以在体内测试新的PV疗法,并在主要患者样品受到限制或不可用时研究PV的开发和进展。脊髓增生性肿瘤(MPN)是由造血干细胞和祖细胞(HSPC)中获得的体细胞突变驱动的,其特征是一个或多个髓样谱系的异常增殖。JAK2 V617F突变是MPN的反复驱动器。1,2 MPN可以作为多性心血症垂直(PV;过量的红细胞),必需的血小板细胞(ET;多余的血小板)或骨髓纤维化(MF;骨髓纤维化)。3-5然而,JAK2 V617F突变细胞的负担在患者中差异很大,并且可以诱导VAF非常低的临床表型。6,7在PV中,超过95%的患者将JAK2 V617F作为驱动致病性突变,但在某些患者中,突变负担可能低于3%VAF。 8尚不清楚这种低突变细胞负担如何产生MPN病理。 当前的JAK2 V617F小鼠建模策略利用复古病毒转导,9,10个转基因等位基因,11或遗传敲入(KI)模型。 12,13然而,这些模型中的大多数产生了高JAK2 V617F突变频率,这些突变频率不能准确反映PV患者的克隆轨迹。 为了超越小鼠模型的局限性,我们最近开发了从MPN患者移植CD34 +细胞的方法,以产生患者衍生的异种移植物(PDX)。 在MF的情况下,对患者衍生的CD34 +细胞的异型范围能够传播基因型,表型和关键患者病理,例如PDX中的网状纤维化。 14然而,尝试从PV患者产生PDX的尝试不太成功,植入率很差和可获得的CD34 +细胞数量有限6,7在PV中,超过95%的患者将JAK2 V617F作为驱动致病性突变,但在某些患者中,突变负担可能低于3%VAF。8尚不清楚这种低突变细胞负担如何产生MPN病理。当前的JAK2 V617F小鼠建模策略利用复古病毒转导,9,10个转基因等位基因,11或遗传敲入(KI)模型。12,13然而,这些模型中的大多数产生了高JAK2 V617F突变频率,这些突变频率不能准确反映PV患者的克隆轨迹。为了超越小鼠模型的局限性,我们最近开发了从MPN患者移植CD34 +细胞的方法,以产生患者衍生的异种移植物(PDX)。在MF的情况下,对患者衍生的CD34 +细胞的异型范围能够传播基因型,表型和关键患者病理,例如PDX中的网状纤维化。14然而,尝试从PV患者产生PDX的尝试不太成功,植入率很差和可获得的CD34 +细胞数量有限
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 8 月 23 日发布。;https://doi.org/10.1101/2022.08.22.504807 doi:bioRxiv preprint
1 MNM Bioscience Inc.,美国马萨诸塞州剑桥市02142,美国; elzbieta.kaja@gmail.com(e.k. ); 26adrian.l@gmail.com(A.L. ); dawid.sielski@mnm.bio(D.S. ); mateusz.sypniewski@mnm.bio(M.S. ); wojtaszewska@gmail.com(M.W。 ); mmaria.stepien@gmail.com(M.S. ); karolina.lisiak@mnm.bio(K.L.-T。); fip.wolbach@mnm.bio(F.W. ); daria.kolodziejska96@gmail.com(D.K. ); katarzyna.ferdyn@gmail.com(k.f. ); maciej.dabrowski@mnm.bio(M.D. ); alicja.wozna@mnm.bio(A.W。 ); paula.dobosz@gmail.com(p.d. ); kasia@mnm.bio(K.Z. ); pawel.zawadzki@mnm.bio(P.Z.) 2华沙内政和行政部中央临床医院,波兰华沙02-507; zbigniew.krol@cskmswia.pl(Z.J.K. ); artur.zaczynski@cskmswia.pl(a.z. ); agnieszka.pawlak@cskmswia.pl(A.P. ); robert.gil@cskmswia.pl(R.G. ); waldemar.wierzba@cskmswia.pl(W.W.)3医学化学与实验室医学系,波兹南医学科学大学,60-101 Poznan,波兰,波兰4 4遗传学和动物育种系,Pozna´n Life Sciences of Pozna´n Life Sciences of Life Sciences,60-637 Poznan,Poland 5波兰; tgambin@gmail.com 6医学遗传学系,母亲和儿童研究所,波兰华沙01-211; Mateusz.dawidziuk@imid.mid.pl 7 Biostatistics Group,Wrocław环境与生命科学大学,波兰弗罗茨瓦夫51-631; tomasz.suchocki@gmail.com(T.S. ); jszyda@gmail.com(J.S。) ); anna.bodora@gmail.com(A.B.-T。); welikowski@wp.pl(W.E.)1 MNM Bioscience Inc.,美国马萨诸塞州剑桥市02142,美国; elzbieta.kaja@gmail.com(e.k.); 26adrian.l@gmail.com(A.L.); dawid.sielski@mnm.bio(D.S.); mateusz.sypniewski@mnm.bio(M.S.); wojtaszewska@gmail.com(M.W。); mmaria.stepien@gmail.com(M.S.); karolina.lisiak@mnm.bio(K.L.-T。); fip.wolbach@mnm.bio(F.W.); daria.kolodziejska96@gmail.com(D.K.); katarzyna.ferdyn@gmail.com(k.f.); maciej.dabrowski@mnm.bio(M.D.); alicja.wozna@mnm.bio(A.W。); paula.dobosz@gmail.com(p.d.); kasia@mnm.bio(K.Z.); pawel.zawadzki@mnm.bio(P.Z.)2华沙内政和行政部中央临床医院,波兰华沙02-507; zbigniew.krol@cskmswia.pl(Z.J.K.); artur.zaczynski@cskmswia.pl(a.z.); agnieszka.pawlak@cskmswia.pl(A.P.); robert.gil@cskmswia.pl(R.G.); waldemar.wierzba@cskmswia.pl(W.W.)3医学化学与实验室医学系,波兹南医学科学大学,60-101 Poznan,波兰,波兰4 4遗传学和动物育种系,Pozna´n Life Sciences of Pozna´n Life Sciences of Life Sciences,60-637 Poznan,Poland 5波兰; tgambin@gmail.com 6医学遗传学系,母亲和儿童研究所,波兰华沙01-211; Mateusz.dawidziuk@imid.mid.pl 7 Biostatistics Group,Wrocław环境与生命科学大学,波兰弗罗茨瓦夫51-631; tomasz.suchocki@gmail.com(T.S.); jszyda@gmail.com(J.S。)); anna.bodora@gmail.com(A.B.-T。); welikowski@wp.pl(W.E.)8波兰国家动物生产研究所,32-083 BALICE 9遗传学与生物技术研究所,华沙大学生物学学院,波兰02-106; p.golik@uw.edu.pl 10弗雷德里克·肖邦省专业医院血液学系,波兰35-055rzeszóW,11. m.mroczek888@gmail.com 12 Department of Infectious Diseases, Medical University of Lublin, 20-059 Lublin, Poland 13 Department of Sports Medicine, Medical University of Lublin, 20-059 Lublin, Poland 14 Medical and Science Sp. z o.o., 08-455 Podebłocie, Poland 15 Institute of Human Genetics Polish Academy of Sciences, 60-479 Poznan, Poland 16 Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland 17 Department of Internal Medicine, J ó zef Stru´s Multidisciplinary Municipal Hospital, 61-285 Poznan,波兰; marcin.zytkiewicz@gmail.com(M。Z. 18波兰科学学院Mossakowski医学研究中心,波兰华沙02-106,191-091华沙大学临床中心血液学,移植和内科,波兰,波兰 *通信 *通信:Pawel.sztromwasser@mnm.mm.bio†这些授权撰稿人。8波兰国家动物生产研究所,32-083 BALICE 9遗传学与生物技术研究所,华沙大学生物学学院,波兰02-106; p.golik@uw.edu.pl 10弗雷德里克·肖邦省专业医院血液学系,波兰35-055rzeszóW,11. m.mroczek888@gmail.com 12 Department of Infectious Diseases, Medical University of Lublin, 20-059 Lublin, Poland 13 Department of Sports Medicine, Medical University of Lublin, 20-059 Lublin, Poland 14 Medical and Science Sp.z o.o., 08-455 Podebłocie, Poland 15 Institute of Human Genetics Polish Academy of Sciences, 60-479 Poznan, Poland 16 Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland 17 Department of Internal Medicine, J ó zef Stru´s Multidisciplinary Municipal Hospital, 61-285 Poznan,波兰; marcin.zytkiewicz@gmail.com(M。Z.18波兰科学学院Mossakowski医学研究中心,波兰华沙02-106,191-091华沙大学临床中心血液学,移植和内科,波兰,波兰 *通信 *通信:Pawel.sztromwasser@mnm.mm.bio†这些授权撰稿人。