在这项工作中,我们证明,由于现有评估协议和数据集中的不足,因此有必要重新审视并全面研究Mul-timodal零射击学习(MZSL)问题问题。具体来说,我们解决了MZSL方法面临的两个主要挑战。 (1)既定基线的情况通常是无与伦比的,而且有时甚至是有缺陷的,因为现有的评估数据集通常与培训数据集有一些重叠,因此违反了零照片范式; (2)大多数现有的方法都偏向可见的类,这在对可见和看不见的类别进行评估时会大大降低性能。为了应对这些挑战,我们首先引入了一个新的多模式数据集,用于零照片评估,称为MZSL-50,其中有4462个视频来自50个广泛多元化的类别,并且与培训数据没有重叠。此外,我们提出了一种新型的多模式零射击变压器(MZST)体系结构,该体系结构利用了吸引瓶颈进行多模式融合。我们的模型可以直接预测语义表示,并且在将偏见降低到可见的类别方面表现出色。我们进行了广泛的消融研究,并在三个基准数据集和我们的新型MZSL-50数据集上实现最先进的结果。具体来说,我们提高了传统的MZSL绩效2。1%,9。81%和8。 vgg-sound,UCF-101和ActivityNet的68%。 最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。 181%和8。vgg-sound,UCF-101和ActivityNet的68%。最后,我们希望引入MZSL-50数据集将促进对社区中多模式零射击的深入研究。1
流动性覆盖。在最近全球银行系统部分领域面临压力的时期,澳大利亚审慎监管局 (APRA) 加强了对澳大利亚银行的监管,并与金融监管委员会 (CFR) 的其他机构一起密切监控更广泛的金融系统。对在澳大利亚运营的银行的审慎要求相当于巴塞尔协议 III 的要求,在某些情况下甚至比巴塞尔协议 III 的要求更高;银行系统的资本和流动性水平远远超过这些要求。[1] 在未来一段时间内,银行预计不良贷款将(从历史低位)增加,以应对高利率和通货膨胀对家庭预算的压力。银行有能力管理这一问题,同时继续向家庭和企业放贷。
应用程序示例 - 市场应用程序 - 索赔管理 - 欺诈管理 - 编辑服务 - 文档和手册出版物 - 出版工作区 - 破坏分析应用程序 - 定制关税的咨询服务 - 财务流程(consiliation等)- 商店开放和促销管理 - 发票例外/批准 - 退款批准 - 库存和存储库 - 文件和手册出版物 - 出版工作区 - 承包商管理 - 工厂管理(任务,更改等)- 废料,废物,污染管理 - 数据分发服务 - 主数据管理 - 行业应用程序(无用产品可用)- 等等
人工神经网络(ANN)是一个信息或信号处理系统,由大量简单的处理元素组成,这些元素与直接链接互连,并配合以执行并行分布式处理以解决所需的计算任务。神经网络以类似的方式处理信息。ann的灵感来自生物神经系统的方式,例如大脑的作品 - 神经网络以身作则。ANN采用与常规计算相比,解决问题的方法。传统的计算机系统使用算法方法,即遵循一组说明以解决问题。将解决问题的能力限制在我们已经理解并知道如何解决的问题上。但是,神经网络和常规算法计算不在竞争中,而是相互竞争。有些任务更适合于算法方法(例如算术操作)和更适合神经网络方法的任务。
心血管疾病是全球性的全球健康问题,在全球范围内促进了发病率和死亡率。在这些疾病中,心律不齐的特征是心律不规则,提出了巨大的诊断挑战。这项研究介绍了一种使用深度学习技术,特别是卷积神经网络(CNN)的创新方法,以解决心律不齐分类的复杂性。利用多层心电图(ECG)数据,我们的CNN模型,包括六层带有残留块的层,在识别五种不同的心跳类型方面表现出了令人鼓舞的结果:左束分支块(LBBB),右束分支块(RBBB),右束支(RBBB),tryal buntial Efferatial Efferatial Promature Contract(apc),thematial Efferatial Contract(APC),phatcral andultral andultral andultral and andult andultral and anductal and p. pvC(PVC)(PVC),PVC。通过严格的实验,我们强调了我们方法学在增强心血管心律不齐的诊断准确性方面的变化潜力。
摘要 - 将神经梯度体系结构(NGA)集成到大语言模型(LLMS)中,导致了自然语言处理的明显进步,从而增强了生成文本的精确性和相干性。通过采用梯度驱动的计算,NGA根据上下文提示动态调整内部途径,从而使LLMS能够更有效地适应各种语言任务。这种方法证明了在上下文理解至关重要的情况下,诸如机器翻译,摘要和对话生成等任务的改进。NGA的融合也有助于减少常见问题(例如重复性或无关的产出),从而提高了生成内容的总体质量。此外,NGA的适应性允许在各个领域对LLM进行更有效的微调,从而促进了其在专业领域的应用,而无需大量的重新培训。经验结果表明,NGA在完善LLM的生成过程中的功效,强调了其大大提高自然语言处理系统性能的潜力。因此,NGA的采用代表了LLM体系结构演变中的关键进展,为开发更响应敏感和上下文意识到的语言模型提供了强大的框架。
摘要尽管如此,诸如经济风险,政治风险和金融风险等风险因素在各种经济和金融调查中都具有各自的利弊。然而,在现有文献中几乎没有研究这些危险因素对可持续风险资本的影响。从这个意义上讲,本研究倾向于研究这些风险对可持续风险资本的影响,同时考虑人力资本在美国经济中的作用。本研究使用2006q1至2020q4的季度数据使用新颖的时间序列方法。估算结果验证了每个变量的平稳性和研究变量之间的协整。不对称的数据分布导致了一种新颖的时刻分数回归方法,该方法说明了经济风险,政治风险,人力资本和可持续风险投资之间的积极关联。在缔结的情况下,发现财务风险对该国的可持续风险投资产生不利影响。通过采用自举分分回归来检查模型的鲁棒性。这项研究表明,对经济,政治和金融风险进行了最小的方式,并增加了人力资本的投资,以鼓励可持续的风险投资。
(CSE/IT)理论共有4个周期每周内部评估20分,总周期60个周期结束SEM考试80分考试3小时总数A.主题明智的时期分布。编号主题周期1计算机硬件的基本结构06 2指令和指令排序07 3处理器系统10 4内存系统10 5输入 - 输出系统10 6 I/o接口和总线体系结构10 7并行处理07 9总60 B.合理:现在,在教育,娱乐,商业,体育等各个领域,计算机的使用变得非常重要。此主题将使学习者了解计算机系统不同组件及其操作过程的架构。进一步学习者将了解不同组件如何集成以执行任务以获得结果。它还为如何提高处理能力提供了一个想法。