Intersect,第 18 卷,第 1 期(2024) 基因组编辑的伦理与经济学 Srija Chaudhuri 都柏林上高中 摘要 体细胞改造和种系改造是可以对人体细胞进行的两种基因改造类型。体细胞改造已获得伦理批准,并正在以基因疗法的形式应用于医疗保健领域,治疗镰状细胞病等疾病。种系改造并未获得同样的批准,在某些国家的研究领域受到严格监管,多个国家完全禁止这种改造类型。种系编辑因不安全、不允许患者知情同意和提倡残疾歧视而受到批评。此外,如果种系编辑程序可用但并非每个人都能负担得起,那么患有遗传病可能成为经济状况较低的标志。无论如何,这种改造类型可以为患有无法治愈的遗传病的人提供一种方法来消除他们的后代可能遭受的痛苦。各国对生殖系编辑的统一监管,包括概述疾病治疗和性状增强之间的区别,对于避免通过司法套利滥用治疗至关重要。在这篇评论中,根据各国常见的高发单基因疾病数量和人均 GDP 对各国进行了分析,以确定哪些国家可能成为生殖系编辑利用的中心,用于临床测试和执行生殖系编辑程序的经济受益者。简介新的基因改造技术促成了新型医疗治疗的兴起。这些治疗包括修改体细胞(非生殖)和生殖细胞(生殖)人类细胞。虽然这些治疗方法的监管不同,并且仍然需要对其安全性和有效性进行测试,但使用基因改造作为治疗方法需要考虑的其他方面是改变人类基因或基因组是否合乎道德,以及各国基因改造监管的不一致将如何影响国际医疗保健行业。体细胞和生殖细胞基因改造可以进行两种类型的基因改造
在复杂的细胞生物学世界中,单倍体细胞在生命的形成和延续中起着至关重要的作用。这些专门的细胞只有一组染色体,是繁殖和遗传多样性过程的基础。本文旨在阐明单倍体细胞在生物系统背景下的特征,功能和意义。HAPLOID细胞是一种仅包含一组完整的染色体的细胞,通常以生物学术语表示为“ N”。这与包含两组染色体的二倍体细胞形成对比,称为“ 2n”。单倍体细胞是通过称为减数分裂的过程产生的,其中二倍体细胞经历了两个连续的分裂,以将其染色体数减少一半。配子,例如人类的精子和卵细胞,是单倍体细胞的经典例子[1,2]。
实体肿瘤的表达谱。由于 LUAD 在我们的队列中占主导地位(> 80%),我们将 PDC 基因表达谱与 TCGA-LUAD 数据集(n = 230)进行了比较。正如预期的那样,PDC 基因组图谱与肿瘤样本相似,并与正常邻近组织区分开来(图 1B)[36]。PDC 和 TCGA 样本中的组成性体细胞基因突变相似。TP53、RB1 和 BRAF 突变的复发在 PDC 和 TCGA 样本中都得到了高度保留。PDC 中的 EGFR 突变频率较高,而 KRAS、KEAP1 和 STK11 突变的复发低于 TCGA 样本(图 1B)。因此,在 PDC 模型中经常观察到 TP53(49%)、EGFR(31%)和 RB1(8%)的体细胞突变(图 1C)。此外,MET (10%)、CDK4 (6%)、
摘要 ◥ 人们在骨肉瘤中进行了多项大规模基因组分析,以确定肿瘤发生、治疗反应和疾病复发的基因组驱动因素。肿瘤内空间和时间的异质性也可能在促进肿瘤生长和治疗耐药性方面发挥作用。我们对 8 名复发或难治性骨肉瘤患者的 37 个肿瘤样本进行了纵向全基因组测序。每位患者至少有一个来自原发部位和转移或复发部位的样本。除一名患者外,所有患者均发现了亚克隆拷贝数变异。在 5 名患者中,来自原发性肿瘤的亚克隆出现并在随后的复发中占主导地位。在 7 名具有多个克隆的患者中,6 名患者的治疗耐药性克隆中 MYC 增益/扩增富集。在耐药拷贝数克隆中还观察到了其他潜在驱动基因(如 CCNE1 、 RAD21 、 VEGFA 和 IGF1R )的扩增。染色体重复时间分析显示,复杂的基因组重排通常发生在诊断之前,支持宏观进化的进化模型,其中大量基因组畸变在短时间内获得,然后进行克隆选择,而不是持续进化。复发性肿瘤的突变特征分析表明,同源修复缺陷 (HRD) 相关的 SBS3 在每个
有两个主要例子,即体细胞或配子体,每种都可以采用两种不同的发育途径:胚胎发生或De-Novo器官发生途径(Soriano等,2013; Long等,2022)。主要差异取决于可以增殖的细胞类型以及导致完全再生植物的发育途径。原始细胞可以是配子或体细胞。同时,发育途径可以涉及产生胚胎,也可以涉及不同器官中分生组织中心的分化(Lardon&Geelen,2020)。在体细胞再生的情况下,细胞起源于二倍体植物组织。再生植物通常具有与供体植物相同的遗传特征和倍增水平,尽管此过程也可以促进由于somaclonal变异而产生具有新特征的植物(Wang&Wang,2012;Galán-ávila等人,2020年)。
近端或远端肺细胞是由干细胞按顺序谱系分化到内胚层,然后进入前肠内胚层,进一步分化为双能肺祖细胞而产生的。每个发育阶段的典型标记以圆圈表示。在分支形态形成过程中,可以通过近端内胚层祖细胞谱系中的 SOX2 表达和远端内胚层祖细胞谱系中的 SOX9 表达来区分发育中的近端-远端轴。进一步成熟后,近端祖细胞将变成 P63 + 基底细胞,即大气道和小气道的体细胞干细胞,而远端祖细胞将变成 SPC + 肺泡 2 型 (AT-II) 细胞,即肺泡区域的体细胞干细胞,它们在受伤后可以自我更新并分化为肺泡 1 型 (AT-I) 细胞。
造血是未成熟的前体细胞成熟血细胞的过程。当前接受的关于该过程如何工作的理论称为单系理论,这仅意味着单一类型的干细胞产生了体内所有成熟的血细胞。
不同于生物体进化( Leroi 等人, 2003 年; Merlo 等人, 2006 年)。在大多数情况下,生物体已经通过自然选择进行了优化,使得大多数具有表型效应的突变(非中性突变)会使情况变得更糟。对于大多数生物体来说,通常只有极少数有益的突变,而有害的突变则很多( Bo¨ ndel 等人, 2019 年; Eyre-Walker 和 Keightley, 2007 年)。然而,自然选择并没有优化体细胞的适应性。它们不会在我们的体内尽可能地增殖和存活。恰恰相反,它们的增殖受到严格调控,而且它们经常在出现任何问题的第一个迹象时死亡。这是因为自然选择已经对它们进行了优化,以配合生物体的适应性( Aktipis, 2020 年)。因此,与增加有机体适应度的突变相比,体细胞中应该存在更多增加细胞适应度的突变。它们甚至可能比对细胞有害的突变更频繁。如果是这样,那么增加体细胞突变率的突变体突变将被正向选择,因为它产生的适应性突变多于有害突变。这对于进化生物学家来说是违反直觉的,但马丁科雷纳的研究表明这是真的。他们发现除了少数必需基因外,几乎没有负面选择的证据,即消除有害突变。但他们发现了大量正向选择的证据,即丰富了增加体细胞适应度的突变。
摘要背景/目的:染色体不稳定性是不同类型癌症(包括结直肠癌)进展的一个众所周知的因素。染色体不稳定性导致严重的核型重排和非整倍体。四倍体构成了致癌过程中多倍体/非整倍体级联的中间阶段,四倍体细胞对化疗特别有抵抗力。抑制有丝分裂蛋白 polo 样激酶 1 (PLK1) 是否会阻止四倍体结肠癌细胞的存活尚不清楚。方法:用 siPLK1 转染二倍体和四倍体细胞或用 PLK1 抑制剂 Bi2536 与纺锤体毒药联合处理。通过结晶紫染色和克隆形成测定评估细胞毒性。流式细胞术评估分析了许多细胞凋亡参数和细胞周期阶段。使用 CompuSyn 软件计算了 Bi2536 与紫杉醇、长春新碱或秋水仙碱之间的协同作用。结果:抑制或消除 PLK1 可阻止结肠癌细胞(特别是四倍体细胞)的存活。PLK 抑制引起的细胞死亡是由于有丝分裂滑移,随后激活了细胞凋亡的内在途径。我们进一步证明,用 PLK1 抑制剂和微管聚合抑制剂长春新碱或秋水仙碱(而不是微管解聚抑制剂紫杉醇)联合治疗四倍体结肠癌细胞会产生致命的协同效应。结论:PLK1 抑制与微管靶向化学物质相结合,可作为针对四倍体癌细胞的有效治疗策略。
生物信息学和计算医学计划,美国路易斯安那州立大学健康科学中心,新奥尔良,洛杉矶70112,美国。背景:尽管在患者管理和筛查方面取得了显着进展,但大肠癌(CRC)仍然是全球与癌症相关死亡的主要原因。CRC的发病率和侵略性上升突出了迫切需要发现新型临床可行的生物标志物,用于开发新型治疗剂的靶标以及算法的发展,这些算法可以准确地鉴定患有侵略性疾病的患者,这些患者可以优先治疗。这项研究的目的是发现潜在的临床可行的诊断和预后基因特征,治疗靶标以及开发机器学习(ML)算法,这些算法(ML)算法可以准确预测疾病的侵略性和临床结果多组学数据。方法:我们使用了从基因组数据共享下载的癌症基因组图集(TCGA)的临床信息注释的公开可用的RNA-seq和体细胞突变数据。我们进行了分析,比较了病例和对照之间的基因表达水平,以发现潜在诊断标记的签名。随后,我们比较了生存的个体与死亡以发现潜在预后标记的签名的个体之间的基因表达水平。我们评估了体细胞突变的基因,并进行了基因集富集分析。发现的基因集被用作ML算法开发和验证的特征。结果:我们发现了与CRC相关的基因的签名和一个预测生存的基因的特征。将基因表达与体细胞突变数据相结合,然后进行富集分析,发现基因特征,分子网络和富含体细胞突变的信号通路。分析产生了目前正在进行的ML算法的开发和验证的基因集。结论:多组分学的整合为发现潜在的临床可行诊断,预后标记和靶标提供了一种有力的方法,以开发CRC中新型疗法。它为开发ML算法提供了一个预测临床结果的框架。单词计数:296/300