Yash Patel 1,2,3*,Chenghao Zhu 1,2*,Takafumi N. Yamaguchi 1,2,3*,Nicholas K. Wang 1,2,Nicholas Wiltsie 1,2,3 Mohammed Faizal Eeman Mootor 1,2,3 , Timothy Sanders 1,2,3 , Cyriac Kandoth 1,2 , Sorel T. Fitz-Gibbon 1,2,3 , Julie Livingstone 1,2,4 , Lydia Y. Liu 1,2,4 , Benjamin Carlin 1,2,3 , Aaron Holmes 1,2 , Jieun Oh 1,2 , John Sahrmann 1,2 , Shu Tao 1,2,3 , Stefan Eng 1,2 , Rupert Hugh- White 1,2 , Kiarod Pashminehazar 1,2 , Andrew Park 1,2 , Arpi Beshlikyan 1,2 , Madison Jordan 1,2 , Selina Wu 1,2 , Mao Tian 1,2 , Jaron Arbet 1,2 , Beth Neilsen 1,2 , Yuan Zhe Bugh 1,2,Gina Kim 1,2,Joseph Salmingo 1,2,Wenshu Zhang 1,2,Roni Haas 1,2,Aakarsh Anand 1,2,Edward Hwang 1,2,Anna Neiman-Golden 1,2,Anna Neiman-Golden 1,2,Philippa Steinberg 1,2,Wenyan Zhao 1,2 Boutros 1,2,3,4,5,§
本指导文件仅供评论之用。请在《联邦公报》上公布指南草案发布的通知中规定的日期之前,提交一份关于本指南草案的电子版或书面意见。请将电子意见提交至 https://www.regulations.gov/ 。将书面意见提交至:食品药品管理局档案管理人员 (HFA-305),地址:5630 Fishers Lane, Rm. 1061, Rockville, MD 20852。您应该使用《联邦公报》上公布的发布通知中列出的档案编号来标识所有意见。可从传播、推广和发展办公室 (OCOD) 获取本指南的其他副本,地址:10903 New Hampshire Ave., Bldg. 71, Rm.联系方式:地址:3128, Silver Spring, MD 20993-0002,电话:1-800-835-4709 或 240-402-8010,邮箱:ocod@fda.hhs.gov,或访问网站:。如对本指南内容有任何疑问,请通过上述电话号码或电子邮件地址联系 OCOD。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 12 月 4 日发布。;https://doi.org/10.1101/2024.12.03.626601 doi:bioRxiv 预印本
全基因组关联研究已发现许多与复杂疾病相关的常见和罕见种系遗传变异,包括单核苷酸多态性 (SNP)、拷贝数变异 (CNV) 和其他组成结构变异。然而,很大一部分疾病易感性仍无法解释,通常称为缺失遗传性。一个越来越受关注的领域是受精后出现的遗传变异,称为嵌合体突变,发生在细胞分裂过程中。携带有害突变的细胞可能通过修复机制、细胞凋亡或免疫监视被消除,而其他细胞可以将其突变传递给子细胞。因此,在早期胚胎发育过程中,每次细胞分裂都会保留一个或多个合子后突变。随着发育的进展,这些突变不断积累,导致细胞间基因组景观多样化。因此,大多数细胞最终携带独特的基因组。虽然许多嵌合体突变可能是中性的,但某些突变可能是致病的。嵌合体可发生在体细胞和生殖细胞中,体细胞嵌合体最近因其在神经遗传疾病中的潜在作用而受到关注。合子后突变涵盖所有主要的突变类型,包括染色体非整倍体、大规模结构异常、CNV、小插入/缺失和单核苷酸变异。其中,嵌合性染色体改变,也称为体细胞CNV(sCNV),通常是由于胚胎发生过程中的染色体不稳定性造成的。这些突变主要发生在合子后或胚胎发育早期,偶尔由合子后对减数分裂错误的部分挽救而引起,导致细胞亚群携带这些突变。值得注意的是,sCNV 在人类神经元中大量存在(1)。大脑主要从外胚层发育而来,而血细胞起源于中胚层。细胞比例高的体细胞突变更有可能发生在发育早期。如果这些突变出现得足够早,例如在原肠胚形成期间或之前,它们可能同时存在于脑细胞和血细胞中。随着个体年龄的增长,克隆性造血会导致血细胞中积累大量高细胞分数体细胞突变,而这些突变可能不存在于其他组织中。因此,分析年轻个体血液的基因组数据可以识别与大脑共有的体细胞突变,为了解脑部疾病的遗传易感性提供有价值的见解(图 1)。目前至少有 8 个实验平台可用于检测 sCNV。表 1 比较了这些分子检测的分辨率、优点和缺点。其中,
MD,美国。4. DeepSeq,诺丁汉,英国。5. 乌普萨拉大学免疫学、遗传学和病理学系生命科学实验室,瑞典乌普萨拉。6. 莱斯大学计算机科学系,美国德克萨斯州休斯顿主街 6100 号。* 通讯作者;贡献相同摘要单细胞 DNA 测序的出现揭示了基因组变异的惊人动态,但未能表征在种系水平上具有深远影响的较小到中等尺寸的变异。在这项工作中,我们利用单细胞长读测序发现了三个大脑中的新动态。这为了解单个细胞基因组的动态提供了关键见解,并进一步强调了转座因子的大脑特定活动。主要单细胞全基因组扩增(WGA)使通常使用短读在低覆盖率 1 下进行的单细胞全基因组测序(scWGS)成为可能,它通常只能检测 Mb 级 CNV,尽管据报道识别了 > 50kbp 的 CNV 2 。无论如何,许多预期的变体(如 Alu 或 LINE 变体)都被遗漏了。这些转座因子 (TE) 家族是最丰富和活跃的转座子,总共占人类基因组的约 27% 3 ,并有助于健康神经元 4 和神经退行性疾病 5–7 的重组。同时,长读测序的出现使得准确检测 Alu 或其他转座子介导的突变成为可能 8 。最近有报道称,在液滴中使用等温多重置换扩增 (MDA) (dMDA) 进行 WGA 后,在 T 细胞上使用长读 scWGS (scWGS-LR) 来组装单个细胞的一个基因组。然而,它的成本很高,而且由于嵌合体和扩增子大小限制,完整性有限 9 。尽管如此,这为进一步探索类似的方法是否能为单细胞的基因组变异提供新的见解开辟了新领域。
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 12 月 13 日发布了此版本。;https://doi.org/10.1101/2024.12.10.627690 doi:bioRxiv 预印本
将组织活检基因组分析的结果与补充液体活检数据相结合,可以全面了解肿瘤生物学。Illumina Cell-Free DNA Prep with Enrichment 是一种多功能文库制备试剂盒,可用于从循环无细胞 DNA (cfDNA) 或从 FFPE 组织样本中提取的基因组 DNA (gDNA) 制备可用于测序的文库 (图 1)。该工作流程包括用于纠正错误和减少假阳性的唯一分子标识符 (UMI),从而能够准确、灵敏地检测 FFPE 肿瘤样本中的低频突变。Illumina Cell-Free DNA Prep with Enrichment 与 Illumina 和第三方富集探针或面板兼容,以支持灵活的实验设计。本应用说明展示了 Illumina Cell-Free DNA Prep with Enrichment 在生成高质量 NGS 文库和从 FFPE 样本中鉴定低频体细胞变异方面的优异性能。
纽约,纽约州 联系人:Ronglai Shen ( shenr@mskcc.org ) 摘要 理想情况下,使用患者匹配的正常细胞样本作为基准来检测肿瘤中的体细胞突变。这样一来,就可以将体细胞突变与罕见的种系突变区分开来。在大型回顾性研究中,档案组织收集会对获取正常 DNA 样本造成挑战。在本文中,我们提出了一种在没有匹配的正常样本的情况下改进体细胞突变分析的方案。该方法的灵感来自 InterMEL 研究,这是一项大规模流行病学调查,涉及对 1000 个原发性黑色素瘤样本进行多组学、多机构基因组分析。实现改进突变调用的关键见解是种系突变应产生约 50% 的变异等位基因频率 (VAF)。虽然纯肿瘤样本中的体细胞突变也有望获得类似的 50% VAF,但通常肿瘤纯度远低于 50%,导致 VAF 明显较低。利用一种可以同时估计肿瘤纯度和 VAF 的技术,我们开发了一种更好地区分体细胞变异和种系变异的方法。基于 InterMEL 研究中 137 个黑色素瘤与匹配的正常组织来提供黄金标准,我们表明使用一组(不匹配的)正常样本的传统流程存在错误
造血是由诱导造血干细胞及其后代分化和增殖的分子机制驱动的。这涉及各种转录因子的活性,例如分裂(HES)家族的毛/增强子的成员以及HES1和HES4的重要作用,已显示在正常和恶性造血中。在这里,我们使用体外和体内模型研究了HES6在人造血中的作用。使用大量和单细胞RNA序列数据,我们表明HES 6在红细胞/巨核细胞和浆细胞类动物树突状细胞的发育以及多能前体以及在T-B-cell发育的特定阶段中表达,分别在T-和B细胞发育的特定阶段中。一致地,在体外分化良好的体外分化测定中,在脐带血源性血液中的HES6敲低导致人类造血质体前体降低了对巨核细胞,红细胞,血浆乳清细胞,血浆乳清细胞,B细胞,B细胞和T细胞的分化。此外,HES6敲低造血茎和祖细胞在体外表现出降低的菌落形成单位容量,并且在竞争性移植测定中在体内重新构成造血的潜力受损。我们证明,HES6表达的丧失对红细胞分化过程中的细胞周期进程有影响,并为影响这些扰动的潜在下流靶基因提供了证据。因此,我们的研究为HES6在人类造血中的作用提供了新的见解。
神经前体细胞(NPC)在几种神经系统疾病中移植的有益作用已很好地确定,它们通常是由免疫调节和神经营养分子的分泌介导的。因此,我们调查了代表女孩严重智障原因的RETT综合征(RTT)是否可能受益于基于NPC的治疗方法。使用体外共培养,我们证明,通过感知病理环境,NPC分泌的因子诱导MECP2典型的形态学和突触缺陷的恢复,典型的MECP2有效神经元。在体内,我们证明了RTT小鼠中NPC的脑内移植显着改善神经功能。为了揭示了介导的益处的分子机制,我们分析了移植动物的转录范围,并揭示了干扰素γ(IFNγ)途径的可能涉及的可能涉及。因此,我们报告了IFNγ挽救突触缺陷的能力,以及MECP2降低模型的运动和认知改变,从而将这一分子途径作为RTT的潜在治疗靶标。