作者:E Demirkan · 被引用 1 次 — 抗菌肽是最重要的防御成分,目前被认为是抵御微生物感染的通用宿主防御工具(Valembois 等...
通过改变横截面区域,周期性和填充因子,我们可以对可能的单位细胞进行网格搜索。在图S.1b中,我们从主文本中绘制了腔c 1的镜像单元电池的完整准频段图。要使发射极夫妇搭配到腔,必须移动频带,以使目标频率以引导模式存在。这可以通过修改单位单元的周期性,同时将所有其他参数固定来实现。如图S.1c所示,降低了孔的周期性,将准TE模式移至较高的频率。从镜像区域到腔区域的腔孔的数量和chirp的功能形式决定了引入的缺陷模式的副词。我们使用二次chirp函数,其中给定单位细胞在腔区域中的周期性由
通过改变横截面积、周期性和填充因子,我们可以对可能的晶胞进行网格搜索。在图 S.1B 中,我们绘制了正文中腔 C 1 的镜像晶胞的完整准 TE 能带图。为了使发射器耦合到腔体,有必要移动能带,使得导模存在于目标频率。这可以通过修改晶胞的周期性来实现,同时保持所有其他参数不变。如图 S.1C 所示,降低孔的周期性会将准 TE 模式移至更高的频率。腔体孔的数量和从镜像区域到腔体的啁啾的函数形式决定了引入的缺陷模式的绝热性。我们使用二次啁啾函数,其中腔体区域中给定晶胞的周期性由下式给出
光子晶体腔 (PhCC) 可以将光场限制在极小的体积内,从而实现高效的光物质相互作用,以实现量子和非线性光学、传感和全光信号处理。微制造平台固有的纳米公差可能导致腔谐振波长偏移比腔线宽大两个数量级,从而无法制造名义上相同的设备阵列。我们通过将 PhCC 制造为可释放像素来解决此设备可变性问题,这些像素可以从其原生基板转移到接收器,在接收器中有序的微组装可以克服固有的制造差异。我们在一次会话中演示了 119 个 PhCC 中的 20 个的测量、分箱和传输,产生了空间有序的 PhCC 阵列,21 按共振波长排序。此外,设备的快速原位测量首次实现了 PhCC 对打印过程的动态响应的测量,在几秒到 24 小时的范围内显示出塑性和弹性效应。25
量子点是电信单光子源的有希望的候选者,因为它们的发射可以在不同的低损耗电信波段上进行调谐,从而与现有的光纤网络兼容。它们适合集成到光子结构中,可以通过 Purcell 效应增强亮度,从而支持高效的量子通信技术。我们的工作重点是通过液滴外延 MOVPE 创建的 InAs/InP QD,以在电信 C 波段内运行。我们观察到 340 ps 的短辐射寿命,这是由于 Purcell 因子为 5,这是由于 QD 集成在低模体积光子晶体腔内。通过对样品温度的原位控制,我们展示了 QD 发射波长的温度调谐和在高达 25K 的温度下保持的单光子发射纯度。这些发现表明基于 QD 的无低温 C 波段单光子源的可行性,支持其在量子通信技术中的应用。
摘要:光学活性自旋系统与具有高协同性的光子腔耦合可产生强光-物质相互作用,这是量子网络的关键成分。然而,获得用于量子信息处理的高协同性通常需要使用光子晶体腔,而光子晶体腔从自由空间的光学访问能力较差,尤其是自旋相干控制所需的圆偏振光。在这里,我们展示了协同性高达 8 的 InAs/GaAs 量子点与制造的靶心腔的耦合,该腔提供近乎简并和高斯偏振模式以实现高效的光学访问。我们观察到量子点的自发辐射寿命短至 80 ps(约 15 个 Purcell 增强),从腔体反射的光的透明度约为 80%。利用诱导透明度进行光子切换,同时相干控制量子点自旋,可以为建立量子网络的持续努力做出贡献。
内窥镜是一种管状光学仪器,用于检查或观察通常肉眼无法看到的体腔。内窥镜的设计便于消毒。在内窥镜中,物体端有物镜和棱镜组件,观察端有目镜。内窥镜图像可以用彩色胶片和录像机记录下来。10. 远程医疗的基本参数是什么?
最先进的安全标准需要检测所有亚铁和有色金属武器以及特殊非磁合金制造的武器。Hi-Pe Plus可以检测到这种类型的武器和刀具,即使它们隐藏在体腔内,并指示威胁的位置,强度和普遍的组成。检查人员,从而获得了对金属物品的透彻知识,并可以根据程序具有最大的有效性和安全性。