量子点在 InSb 纳米线内以栅极定义,靠近 NbTiN 超导触点。随着点和超导体之间的耦合增加,传输中的奇宇称占据区域在诱导超导间隙上方和下方都变得不可辨别(被擦除)。在间隙上方,奇数库仑阻塞谷中的电导率增加,直到谷被抬起。在间隙下方,安德烈夫束缚态经历量子相变,变为奇数占有的 Kondo 屏蔽单重态基态。我们研究了在低偏置和高偏置下奇宇称状态的明显擦除在多大程度上一致。我们用数值重正化群模拟来补充实验。我们从 Kondo 屏蔽和超导之间的竞争的角度来解释结果。在擦除奇宇称机制中,量子点表现出类似于有限尺寸马约拉纳纳米线的传输特征,在偶奇点占据和偶奇一维子带占据之间形成相似性。
量子光力学的大多数研究都集中在单个振荡器上,展示了基态冷却和量子压缩等量子现象。但集体量子行为并非如此,其中许多振荡器作为一个整体运行。虽然这些集体动力学是创建更强大的量子系统的关键,但它们需要对具有几乎相同特性的多个振荡器进行极其精确的控制。
在作为胶体量子点(CQD)产生的材料中,HGTE具有特殊的状态,是覆盖从可见光到THZ的整个红外范围的唯一材料(0.7-100μm)。这种独特的特性是由其电子结构产生的,结合了空气稳定性和电荷传导能力,在过去的二十年中产生了一致且庞大的效果,以产生和改善HGTE CQD。同时,HGTE CQD与中波红外的任何其他胶体替代品更先进,内容涉及其整合到高级光子和光电应用中。在这里,HGTE CQD相对于材料的生长,电子结构建模,其整合到光子结构中的最新发展及其作为从单个元素设备向复杂传感器和红外成像器的活动材料传递的传递。最后,还包括有关该材料对行业的潜力的讨论,还包括相对于材料和设备设计,在低技术准备水平的经济和生产方面增加了新的挑战。
在胶体纳米晶体中,2D 纳米片具有一组独特的特性,具有极窄的发光和低激光阈值。此外,它们的各向异性形状扩大了异质结构复杂设计的范围,可以设计光谱和散射率。仍然存在的挑战是将使 NPL 稳定的壳生长与光谱可调性结合起来。事实上,由于量子限制的损失,大多数报道的带壳纳米片最终都成为红光发射体。在这里,探索了单个异质结构内横向和平面限制的组合。生长出一种能够发射黄光的 CdS/CdSe/CdS/CdZnS 核-冠-冠壳结构,该结构可响应各种激发,包括可见光子、X 射线光子、电子束和电激发。k.p 模拟预测,在理想结构中可以获得高达几百 meV 的发射可调性。这种材料还显示出由低阈值双激子发射引起的受激发射。一旦集成到 LED 堆栈中,这种材料就与亚带隙激发兼容并表现出高亮度。还研究了通过缩小像素尺寸来缩放电致发光特性。
稀释,超速原子气体为研究集体量子性能提供了一个绝佳的平台,因为它们的可操作性和相互作用的相对简单特征。在这种情况下,Bose-Einstein冷凝物的二元不混合混合物显示出异国情调的激发,例如量子巨大的涡流(即涡流的核心由少数群体填充)。量子涡旋不仅具有超流量背景下的基本利益,而且还具有宇宙学,超导性,非线性光学的类比,并且可能与量子霍尔效应有关。涡流质量的出现是混合物的典型特征,但也可能是由于有限的温度效应或杂质引起的,并导致令人着迷的现象。在论文中,我们着重于两种不同的肺泡物种混合物中巨大涡旋的二维动力学,具有接触相互作用和硬壁圆形电位。我们通过变异的拉格朗日方法得出了n v巨大涡流的点状模型,并将其应用于偶联对大规模涡流动力学的效果的研究。在此基础上,在不平衡的涡流质量的情况下,我们发现并表征了两涡轨轨迹的一些显着解决方案。我们根据描述混合物的(平均场)Gross-Pitaevskii方程来验证我们的分析结果。我们对不平衡涡旋对的表征导致了引人入胜的动力学状态的识别,从而使微观涡流质量允许其位置和预动力频率进行间接度量。随后,我们通过考虑填充成分的量子隧穿来扩展涡流对的研究以包括时间依赖性涡流质量。通过数值模拟,我们发现该系统具有宏观动力学,导致了骨化约瑟夫森连接(BJJ)。bjjs的动力学表现出具有超导性约瑟夫森连接的类比,并观察到了光势中相干的玻色气体。在BJJS中,中性原子的相互作用特征显示出新的效果,例如宏观量子自我捕获。值得注意的是,我们发现我们的两涡体系统显示出表征BJJ的所有(非线性)现象,并且随着时间的流逝,它是稳健且稳定的。我们还得出了BJJ的相应Bose-Hubbard模型及其均值近似,从而为模型的系数提供了一些分析表达式,这是重要系统参数的函数。我们的工作为令人兴奋的前景开辟了道路,例如研究涡旋项链和格子中填充成分的隧穿,杂物和不对称的效果是由潜在的不同涡流核心大小,多重量化量化涡流的包含以及对Fermi超级氟化物扩展的范围。
量子比特读出是量子计算机中需要在单个量子比特上实现的三个基本量子操作之一,它具有一量子比特门和二量子比特门。获得具有合理保真度的量子计算结果至关重要。它对于容错量子计算和量子纠错 (QEC) 协议也至关重要,因为它允许见证和追溯计算流程中发生的错误 [1]。在半导体量子电路中,要求量子比特读出保真度高于 99%,速度低于每发一微秒,以保证 QEC 效率并确保具有竞争力的计算运行时间。此外,为了在运行算法时调整测量性能 [4],需要进行重复 [2] 或量子非破坏性测量 [3]。自旋读出操作的关键性能系数是保真度(或检测效率)、速度(必须快于弛豫时间 T1)以及能够执行读出所需的基本组件数量(储存器、量子点等)。直接测量量子点中捕获的单个电子自旋产生的磁场是一项非常具有挑战性的任务,2000 年初的一项“绝技”实验已经证明了这一点 [5]。除了复杂性之外,它还相当慢(ms),与量子计算不兼容。在半导体中,自旋读出是通过将自旋转换为电荷信息来执行的,并在接近 µs 的时间尺度上探测电子的电荷特性。
在过去的几十年中,量子技术领域一直在迅速扩展,产生了许多应用,例如量子信息,量子通信和量子网络安全。在这些应用的核心上是量子发射极(QE),这是单个光子或光子对的确切可控的发电机。半导体QE,例如钙钛矿纳米晶体和半导体量子点,作为纯单个光子的发射器表现出很大的希望,当用等离子体型纳米腔杂交时,具有产生光子对的潜力。在这项研究中,我们开发了一个系统,在该系统中,可以以可控的方式与外部等离子跨表面进行交互之前,期间和之后,可以追溯到单个量子发射器及其集合。将外部等离质元面耦合到量化量阵列后,单个QES从单光子发射模式切换到多光子发射模式。值得注意的是,该方法保留了QE的化学结构和组成,使它们可以在与等离子次曲面解耦后恢复至初始状态。这显着扩大了半导体QE在量子技术中的潜在应用。
可以将物联网(IoT)描述为一组对象,这些对象具有一个或多个传感器,软件,发射器,接收器和许多其他仪器,并且可以通过Internet或通信网络之间的彼此和其他设备/系统进行通信。它在许多不同的领域中都有应用程序,包括可穿戴电容器,智能家居设备,零售,办公室,工作地点和面具。1组成IoT设备的主要组件是与其他“事物”,切换到控制以及为这些设备供电的电源的发射器和接收器。量子点(QD)在过去几十年中由于其特性而引起了很多关注。其中一些特性是可调的带隙,狭窄的发射宽度,高稳定性,电致发光(EL),光发光(PL)和高PL量子产率(PLQY),这些属性(PLQY)是用于诸如光电旋转,生物医学,光效率二氧化碳,光diodes,Photodetectors等不同应用的所需属性。2
1。肯定,新的集体量化气候融资目标旨在加速巴黎协议的第2条的实现,即在巴黎协议的第2条中保持全球平均温度升高至2°C以下2°C低于工业工业水平高于前工业水平,并追求将温度限制为高于1.5°C以上的1.5°C高于前工业水平的变化,这将降低这一风险,并影响了这种风险,并且会影响倾斜的影响,并影响了污点。增强适应气候变化和促进气候弹性的不利影响的能力,并以不威胁粮食生产的方式发展温室气体排放的能力;并使财务流与低温温室气体排放和气候有弹性的发展一致;
27。在与当事方的第六和第七届会议的总统指导下,在与当事方协商的指导下,与当事方协商,“巴氏到1.3T的巴库路线图”,旨在扩大国家 /地区的发展,以扩大国家 /地区的发展,以扩大国家 /地区的发展,并缩小了国家的贡献,并促进了越来越低的绿化气体和质量质量,并促进了绿化的绿化气体 - 质量 - 质量和质量 - 质量和质量 - 质量质量和良好的质量 - 质量 - 质量 - 良好的质量 - 良好的质量 - 良好的质量 - 良好的质量 - 并促进了良好的绿化房屋,并促进了国家的贡献。国家适应计划,包括通过赠款,优惠和非债务创造工具以及制定财政空间的措施,并考虑到相关的多边计划;并要求总统提出一份报告,以总结这项工作,因为他们在当事方大会的第七届会议上作为巴黎协定当事方会议的第七届会议(2025年11月);