☐ 垂直基准面参考 1988 年北美垂直基准面 (NAVD88) ☐ 水平方向参考 1983 年北美基准面 (NAD83) ☐ 规划日期和北箭头 ☐ 申请人、业主和设计师的姓名和地址 ☐ 设计工程师的姓名和地址 ☐ 带有原始签名的 PE 和 RLS 印章 ☐ 相应地标记基准 ☐ 位置规划和图例 ☐ 显示与 (NAD83) 相关的界址和边界以及相邻业主的产权线 ☐ 评估地图和地块编号、地块面积和分区 ☐ 200 英尺内的湿地划定、溪流、池塘和供水保护区。 ☐ 与 (NAVD88) 相关的现有和拟议等高线,至少间隔两英尺 (2') ☐ 现有和拟议的公用设施,显示大小和水、下水道、排水系统、煤气和电力干线和服务的类型。 ☐ 现有和拟议的下水道和排水结构的边缘和底部 ☐ 现有和拟议结构/建筑物的大小和尺寸 ☐ 拟议开发项目 100 英尺范围内现有车道和车道开口的位置。 ☐ 任何毗邻公共或私人道路的名称和位置 ☐ 显示适当数据的分区 ☐ 尺寸停车位和指定交通流通计划 ☐ 高于 4 英尺的挡土墙需要由有执照的体量结构工程师设计。图纸上应添加一条注释,指出盖章的结构设计和计算需要在施工开始前提交给工程部门并获得批准 ☐ 一般注释中包含以下注释:
估计多体量子系统的整体特性(例如熵或二分纠缠)是一项极其困难的任务,通常需要大量测量或经典后处理资源,而这些资源会随着系统规模的扩大而呈指数增长。在这项工作中,我们解决了通过部分转置 (PT) 矩估计全局熵和混合态纠缠的问题,并表明在假设所有空间相关长度都是有限的条件下,存在有效的估计策略。专注于一维系统,我们在系统密度矩阵上确定了一组近似分解条件 (AFC),这些条件使我们能够根据局部子系统的信息重建熵和 PT 矩。这产生了一种简单有效的熵和纠缠估计策略。我们的方法可以以不同的方式实现,具体取决于如何提取有关局部子系统的信息。我们专注于随机测量 (RM),提供一种实用且常见的测量方案,证明我们的协议只需要多项式多次测量和后处理操作,假设要测量的状态满足 AFC。我们证明 AFC 适用于有限深度量子电路状态和平移不变矩阵积密度算子,并提供数值证据证明它们在更一般、物理上有趣的情况下得到满足,包括局部汉密尔顿量的热状态。我们认为,我们的方法可以实际用于检测当今量子平台中可用的大量量子比特的二分混合态纠缠。
年龄:65 岁以上的人和 4 岁以下的儿童无法轻易调节体温。他们也更容易脱水。 饮酒:饮酒会导致脱水和难以控制体温。它们都会增加中暑的风险。 生活方式:不习惯在高温条件下工作的人中暑的可能性更高。如果您穿着厚重的衣服或设备,风险会增加。 药物:某些药物的副作用可能会增加您的风险。例如,用于治疗心脏病的利尿剂(水丸)会减少体内的液体量并可能导致脱水。此外,化疗药物(用于治疗癌症)和β受体阻滞剂(用于降低血压和减慢心率)也会增加中暑的风险。 体重和总体健康状况:超重的人中暑的几率更高。肥胖和某些健康状况(如糖尿病和心脏病)会增加风险。何时就医:如果您认为自己正在经历中暑:停止所有活动并休息,移至凉爽的地方,并尽快补充水分。如果您的体征或症状恶化或在一小时内没有改善,请联系您的医生。如果您身边有人出现中暑迹象,如果他或她变得神志不清或焦躁不安、失去意识或无法饮水,请立即就医。如果不及时治疗,中暑可能导致中暑。中暑是一种严重的、危及生命的疾病。中暑可导致脑损伤、器官衰竭和死亡。查看链接获取更多信息:https://www.mayoclinic.org/diseases-conditions/heat- exhaustion/diagnosis-treatment/drc-20373253
逆问题持续引起人们的极大兴趣,特别是在量子控制动力学和量子计算应用领域。在此背景下,量子最优控制理论试图构建一个外部控制场 E(t),使量子系统从已知的初始状态演化到目标最终状态。预测 E(t) 的时间形式对于控制量子计算 [1]、量子信息处理[2–4]、激光冷却[5, 6] 和超冷物理 [7, 8] 中的潜在动力学至关重要。在复杂的多体量子系统中,预测最优 E(t) 场为控制光捕获复合物和多体相干系统中所需的动力学效应提供了关键的初始条件 [9–13]。解决这些量子控制问题的传统方法是使用基于梯度的方法或其他数值密集型方法最大化所需的跃迁概率 [14–17]。这些方法包括量子轨迹上的随机梯度下降 [18]、Krotov 方法 [19]、梯度上升脉冲工程 (GRAPE) [20] 方法和斩波随机基算法 (CRAB) [21] 方法。虽然每种算法都有自己的目的和优势,但大多数方法都需要复杂的数值方法来求解最优控制场。此外,由于这些逆问题的非线性特性,这些算法中的迭代次数和浮点运算次数可能非常大,有时甚至会导致相对简单的一维问题的结果不收敛 [16, 22])。为了解决前面提到的计算瓶颈,我们小组最近探索了使用监督机器学习来解决这些复杂的逆问题
过去几年中,量子信息论的最新发展强烈推动了复杂量子现象的表征。在这样的框架中,一个关键概念就是纠缠。纠缠除了被认为是量子计算和通信任务的基本资源 [1] 之外,还被用来更好地表征不同多体量子系统在相关哈密顿量的某些特征参数发生变化时的临界行为;后一种现象被称为量子相变 (QPT) [2]。事实上,人们还没有完全深入理解 QPT 的普遍性质。在这种情况下使用纠缠的特殊之处在于,作为量子关联的单一直接测度,它应该允许对 QPT 进行统一处理;至少,每当发生的 QPT 归因于系统的量子性质时,这总是在 T 0 时,因为不存在热涨落。 [3] 中首次描述了自旋 1=2 链中单自旋或双自旋纠缠与 QPT 之间的关系,其中注意到并发度的导数在 QPT 的对应性上表现出发散,并具有适当的标度指数。随后在 [4] 中研究了 L 自旋块的纠缠及其在表现出临界行为的自旋模型中的标度行为。最近在 [5] 中解决了通过纠缠来表征费米子系统基态相图的问题,其中展示了如何通过研究单点纠缠来重现已知(数值)相图的相关特征。虽然这是一个有希望的起点,但仍需澄清哪些量子关联导致了 QPT 的发生:是两点还是共享点(多部分),是短程还是长程。事实上,要回答上述问题,需要对任何两个子系统之间的纠缠进行详尽的研究。如果子系统只有 2 个自由度,则共生性可以正确量化量子关联 [6]。一个概括
引言:传统上,量子多体系统的研究集中于预测少体可观测量,如局部相关函数。最近,受量子热化和混沌[1]、量子系统的经典模拟[2]和量子引力[3]中基本问题的启发,物理学家们转向了一项互补的研究:量化多体动力学本身的复杂性。这一研究的核心是量子信息扰乱的概念;在几乎所有相互作用的多体量子系统中,最初在局部算子中编码的信息会逐渐变得高度非局部[4-6]。值得注意的是,最近的实验进展使得直接测量扰乱成为可能——这项任务最常见的是利用时间倒退演化[7-14],但也可以使用系统的多个副本[15-17]或随机测量[18,19]来执行。在这样的系统中,扰乱动力学、外部退相干和实验噪声之间的相互作用引发了一个基本问题:开放量子系统中量子信息扰乱的本质是什么[13,16,20 – 31]?在本文中,我们引入了一个基于算子尺寸分布的通用框架[32 – 35],用于捕捉局部误差对扰乱动力学的影响。具体来说,我们推测混沌多体系统中误差的传播从根本上受时间演化算子的尺寸分布控制,与微观误差机制无关。我们的框架立即为 Loschmidt 回声[36 – 38] 和非时序相关 (OTOC) 函数 [39,40] 提供了预测。具体来说,我们预测 Loschmidt 回声的衰减(用于测量与时间向后演化相关的保真度)发生在
摘要。表面熔化是南极冰架塌陷的主要驱动因素之一,随着全球气候的持续变暖,预计将来会增加,因为空气温度和熔化之间存在统计学上显着的正相关关系。增强的表面熔体将影响南极冰盖(AIS)的质量平衡,并通过动态反馈诱导全球平均海平面(GMSL)的变化。然而,南极中对表面熔体的当前理解在量化表面熔体和了解过去,现在和建筑环境中表面熔体的驱动过程的不确定性方面仍然有限。在这里,我们构建了一个新型的网格细胞级分布分布的正学位日(PDD)模型,该模型被强迫使用2 m的空气温度重新分析数据,并通过将卫星估计值和表面能量平衡(SEB)模型(SEB)模型(SEB)模型(SEB)模型(SEB)模型(SEB)模型(SEB)模型(SEB)模型(SEB)模型的每个计算单元格上的1979年至2022222222222.,我们根据PDD模型的性能评估了我们参数化方法的准确性,当时考虑了整个计算单元格,这与选择用于参数化的时间窗口有关。我们通过将用于PDD参数化的训练数据(卫星估计和SEB模型输出)增加±10%,并通过将恒定温度扰动( + 1, + 2, + 3, + 4和 + 5 o C)添加到2 M空气温度模型。我们发现,PDD融化范围和数量类似于训练数据的变化,其统计学上显着的相关性稳定,并且PDD熔体量融合的量随着温度的
全身PET/CT覆盖整个患者的一个床位,例如UExplorer®,代表了成像技术方面的重大进步,满足了许多临床和研究需求,同时还提出了新的挑战。但是,采用这项技术并非没有障碍。由于其构造所需的晶体量,这些系统的成本较高。也存在与扫描仪的物理大小相关的实际考虑因素,可以适合大多数但不是全部PET/CT套件。因此,联合成像考虑了临床需求,技术规格,房间尺寸以及开发全身系统的成本。在考虑能够在单床位置从头部扫描到大腿中部的全身宠物/ CT系统的必要规格时,有必要查看成人人群的平均高度。男性的中位高度为178.4厘米,女性为164.7 cm 1-表明,很大一部分患者人群可能不会在一次扫描范围(100 cm)的扫描范围内完全覆盖。(图1)这尤其正确,因为您认为灵敏度在视野边缘在头部和骨盆区域的边缘下降。此限制可能导致需要多次扫描通行证,这引入了注册错误的潜力并增加了整体扫描时间。UMI Panorama™GS的长轴向视野为148厘米,有效地解决了这个问题,从而使大多数人可以从顶点到大腿中部的覆盖范围。对于总体和全身宠物系统,需要克服技术挑战,以解决视差,散射,随机物,以在较大的轴向视野(AFOV)(AFOV)(AFOV)中具有检测器效率并管理它们生成的实质数据。
本研究调查了光滑表面散热器和翅片表面散热器的电喷雾冷却特性。在锥形喷射模式下,使用乙醇对 7 种不同热流进行了实验研究,可产生稳定连续的液滴直径。实验中使用了 7 kV 电压、20 mm 喷嘴到基板距离、0.61 mm 内径 (di) 的不锈钢喷嘴和 0.45–0.60 ml/min 的流速。由于两个流速值非常接近,因此在电喷雾形成方面没有观察到差异,但由于送往散热器的液体量较多,因此在 0.60 ml/min 流速下,不同热流下的冷却效果比 0.45 ml/min 流速下好 15–44%。此外,首次应用于电喷雾冷却的翅片散热器的冷却效果比光滑表面散热器大约好 1.3 到 1.6 倍。电喷雾滴水对翅片散热器冷却效果的影响用增强比 (ER) 表示。此外,还研究了不同表面温度下翅片增强比 (FER) 的变化,该比表示翅片散热器与无翅片散热器相比的冷却增强程度。结果,与使用电喷雾冷却改善传热的研究不同,建议可以使用以前未使用过的翅片表面散热器作为进一步增强传热的有效参数。2020 卡拉布克大学。Elsevier BV 出版服务本文为 CC BY-NC-ND 许可下的开放获取文章( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
摘要随着预期寿命的增加,神经退行性疾病的流行率也随之增加。神经变性会导致渐进的区域脑萎缩,通常在症状发作之前引发。研究人员衡量潜在治疗对小鼠模型中萎缩的影响以评估其有效性。这很重要,因为与症状管理相反,旨在对抗神经病理学的治疗更有可能改变疾病。磁共振成像虽然精确地测量了大脑区域结构体积,但价格昂贵。相反,更常用的是立体量评估,即从成像的2D脑切片中估算单个3D脑区域体积的过程。这涉及在定期间隔成像的横截面中手动追踪大脑区域以确定其2D区域,然后使用Cavalieri原理估算体积。这种方法的相关警告是劳动密集型手动追踪过程,以及由于人类变异而引起的潜在不准确性。为了克服这些挑战,我们创建了一个神经病理评估工具(NAT),以使用人工智能(AI)(AI)和拓扑数据分析的概念自动化区域脑示意和识别。通过比较亨廷顿病模型小鼠纹状体体积的手动和NAT分析来验证NAT。NAT检测到效率较高的纹状体萎缩,93.8%与手动测量和较低的组间变异性一致。NAT将提高临床前神经病理学评估的效率,从而可以进行更多的实验疗法,并促进药物发现棘手的神经退行性疾病。