APL101 工程应用中的应用数学 3 学分 (3-0-0) 常微分方程:二阶 ODE、待定系数法、参数变异、Strum-Liouville 特征值问题、差分方程。偏微分方程:PDE 的分类、热、波和拉普拉斯方程、分离变量以解决 PDE。傅里叶变换:傅里叶正弦变换、傅里叶余弦变换、解决 ODE 和 PDE 的技术。概率论:概率公理、条件概率、随机变量、工程系统中的不确定性、离散和连续分布、分布函数、联合概率分布、矩、协方差、相关系数。随机过程:随机过程的定义、随机 FE 模型、平稳过程、马尔可夫链、泊松过程。
为了提取投标的详细信息,使用了 tender_basic_details 和 tender_work_items 表。在 54000 份投标中,27570 份工作项目在 tender_basic_details 表中有相应的条目。合并表后,所有空列都将被删除。数据集中的产品类别由 143 个数字代码表示。然后使用主表 gep_product_category 将这些数字替换为其文本对应项。对于分类数据类型,使用骰子度量计算距离,其中当值不相等时距离被视为“1”,否则为“0”。对于连续文本数据类型,两个文本之间的距离与相似度成反比。相似度使用余弦相似度方法计算。对于连续实值,距离是两个值的绝对差除以
1。尽管气候PAL最初会创建用户查询的通用摘要,但此摘要可能包含与分析相关的单词,例如“绘图”或与其他描述符相关的单词,例如年范围。为了帮助变量预测变量关注可变的信息,我们提示GPT专门编写与对话摘要相关的CMIP6变量的描述。2。使用OpenAI的Text-3-Embedding-large-large模型[3]嵌入了每个变量的描述和步骤(1)中产生的描述。我们确定了10个变量的集合,其中最小的余弦距离与步骤(1)描述的描述。3。此候选名单是在与GPT的第二个呼叫中一起提供的,以及原始用户查询和ICL提示,从列表中选择与回答查询最相关的变量。
背景:连续修改,次优的软件设计实践和严格的项目截止日期有助于代码气味的扩散。检测和重构这些代码气味对于维持复杂而必不可少的软件系统至关重要。忽略它们可能会导致未来的软件缺陷,使系统具有挑战性,并最终过时。监督的机器学习技术已成为无需专家知识或固定阈值值的代码气味分类的有价值的工具。可以通过有效的特征选择技术和优化超参数值来实现分类器性能的进一步增强。AIM:通过使用各种类型的元元素算法(包括群体智能,物理学,数学和基于生物的)等各种类型的元元素算法对多种机器学习分类器的性能度量进行改进。将其性能度量进行比较,以在代码气味检测的背景下找到最佳的元元素算法,并根据统计测试评估其影响。方法:本研究采用了十六种当代和鲁棒的元元素算法来优化两种机器学习算法的超参数:支持向量机(SVM)和k -near -tehermest邻居(K -NN)。无免费的午餐定理强调了一个应用程序中优化算法的成功可能不一定扩展到其他应用程序。因此,对这些算法进行了严格的比较分析,以确定最佳的代码气味检测解决方案。75%,100%和98。分别为57%。分别为57%。各种优化算法,包括算术,水母搜索,基于学生心理学,基于学生心理学,正弦余弦,Jaya,Jaya,crow Search,Dragon Fly Fly,Krill Herd,Multi-Forse,共生,花生,花授粉,基于学习的学习,基于学习,牵引力搜索,牵引力搜索和基于生物地理学的优化。结果:在优化的SVM的情况下,获得的最高准确性,AUC和F量值为98。非常明显的是,准确性和AUC的显着提高,达到32。22%和45。分别观察到11%。对于k -nn,最佳准确性,AUC和F量值的值在100%下都是完美的,准确性和ROC -AUC值值得注意的远足,相当于43。89%和40。 分别为83%。 结论:优化的SVM通过正弦余弦优化算法表现出卓越的性能,而K -NN则通过花朵优化算法达到其峰值性能。 统计分析强调了采用荟萃算法来优化机器学习分类器的实质性影响,从而大大提高了其性能。 优化的SVM在检测上帝类方面表现出色,而优化的K -NN在识别数据类方面特别有效。 这个创新89%和40。分别为83%。结论:优化的SVM通过正弦余弦优化算法表现出卓越的性能,而K -NN则通过花朵优化算法达到其峰值性能。统计分析强调了采用荟萃算法来优化机器学习分类器的实质性影响,从而大大提高了其性能。优化的SVM在检测上帝类方面表现出色,而优化的K -NN在识别数据类方面特别有效。这个创新
这是自然语言处理 (NLP) 的第一门课程,完成本课程后,学生可以继续学习更高级的材料。在本课程中,我们将回顾机器学习 (ML) 的基础知识,例如回归与分类、预处理、ML 模型、过度拟合、欠拟合和评估。此外,我们还将学习自然语言处理的基础知识,例如词性、词形还原、词干提取、命名实体识别、停用词、依存关系解析、单词和句子相似性、标记化、预处理功能、词云、文本摘要、关键字搜索、词袋、TF-IDF(词频 - 逆文档频率)和余弦相似性。此外,我们将运用机器学习和自然语言处理 (NLP) 的知识,使用 ML 模型、NLTK、spaCy 和其他 Python 库来实现该领域的一些热门项目。
为了进行补偿,RCU10 单元将编码器提供的正交输入转换为“分辨率单位”计数脉冲和相关方向(上/下线)。随后是数字缩放电路,允许更改有效分辨率,从而将激光波长相关单位转换为更标准的工程单位。(例如,在机床应用中,633 nm 通常转换为 1 µm。)缩放电路之后,注入器装置允许将“分辨率单位”脉冲添加或减去计数脉冲流。通过缩放和“分辨率单位”脉冲注入的组合来实现补偿。将这些校正应用于反馈后,将其转换为数字正交或模拟正弦/余弦并发送到控制系统。整个过程的延迟小于 2 µs。
摘要 - 放射治疗中心的续录加速器项目,要求在转移线和龙盘中强烈弯曲的磁铁。在设计和制造强烈弯曲,余弦和cosine-theta型磁铁方面已取得了一些进步。本文提出了一种新的计算机辅助功能(CAD)引擎,用于为各种类型的Mandrelsurfaces(椭圆,弯曲,圆锥形)生成线圈几何形状,并与磁场软件以及CAD工具生成。CAD发动机基于FRENET框架的微分几何形状,并允许对曲率参数(例如曲率,扭曲和扭转)进行分析计算。应用可开发表面的理论,可以生成零高斯曲率的导体几何形状,这对于高温超导体磁带等应变敏感的超导管特别有趣。
近量子限制的约瑟夫森参量放大器 (JPA) 是超导量子电路中必不可少的组件。然而,众所周知,约瑟夫森余弦势的高阶非线性会导致增益压缩,从而限制可扩展性。为了降低四阶或克尔非线性,我们实现了一个具有 Al-InAs 超导体-半导体混合约瑟夫森结 (JJ) 的参量放大器。我们从两个不同的设备中提取了 Al-InAs JJ 的克尔非线性,并表明它与具有相同约瑟夫森电感的 Al-AlO X 结相比低了三个数量级。然后,我们演示了一种由 Al-InAs 结制成的四波混频 (4WM) 参量放大器,该放大器实现了超过 20 dB 的增益和 -119 dBm 的压缩功率,其性能优于基于 Al 结的单谐振 JPA。
PO1 PO2 PO3 PO4 PO5 PO6 CO1 3 3 2 2 2 3 CO2 3 2 2 3 3 2 CO3 3 2 3 3 2 3 CO4 3 3 3 3 2 3 教学大纲: 基础拓扑:简介 黎曼斯蒂尔杰积分:积分的定义和存在性,积分的性质,具有可变极限的积分的积分和微分。 不正确积分:定义及其收敛性,收敛测试, 和 函数。 一致收敛:一致收敛的测试,和函数的极限和连续性定理,函数级数的逐项微分和积分。 幂级数:收敛及其性质。 傅里叶级数:狄利克雷条件、存在性、问题、半程正弦和余弦级数。学习资源:教科书:1. 数学分析原理,Walter Rudin,McGraw Hill,2017,第三版。2. 实分析,Brian S.Thomson,Andrew M.Bruckner,Judith B.Bruner,Prentice Hall