摘要:目前,缺乏关于第三剂 mRNA 疫苗诱导的免疫反应的影响和长期持久性的临床证据。在本研究中,我们跟踪了一组免疫功能正常的个体在接种第三剂疫苗三个月和六个月后的 B 细胞区室行为。在此期间,一些受试者感染了病毒。在未感染的接种疫苗的受试者中,我们没有报告血清刺突特异性 IgG 水平的任何变化,IgA 显着降低。相反,从自然感染中恢复的受试者的特异性 IgG 和 IgA 均显着增加。此外,我们发现与康复的受试者相比,未感染者对所有令人关注的 SARS-CoV-2 变体 (VOC) 的 IgG 中和潜力随时间下降,而康复的受试者表现出增强的中和能力,尤其是对 omicron 变体。最后,我们强调了两组中均存在一组 SARS-CoV-2 特异性 B 细胞,这些细胞易于对再刺激作出反应,这体现在它们分化为浆细胞和产生抗 SARS-CoV-2 特异性免疫球蛋白的能力上。这些数据使我们确信 BNT162b2 疫苗在对抗严重病理形式和预防 COVID-19 相关住院治疗方面具有长期有效性。
代谢和DNA复制是生活中两个最基本的生物学功能。代谢的分解代谢分支分解了营养,以产生代谢的能量和前体,该能量由代谢分支用于合成大分子的代谢分支。DNA复制消耗了能量和前体,以忠实地复制基因组,从而一代地传播遗传物质。我们对支撑和调节这两种生物功能的机制有精致的理解。然而,将复制与代谢复制及其生物学功能的分子机制仍然未知。通过细胞周期动态变化对生物的营养刺激作出反应,并在广泛的生长条件下可重复地和明显地将DNA合成时间暂时性化,这是重要的,这在所有领域都具有广泛的含义。总结了建立复制代谢控制概念的开创性研究后,我们回顾了将代谢与从细菌到人类复制的复制联系在一起的数据。然后提出了基于这些联系的基于这些联系的分子见解,以提出复制的代谢控制使用信号系统齿轮代谢体稳态来协调复制时间的时间化。在该控制的突变体中发现的显着复制表型突出了其在复制调节以及潜在的遗传稳定性和肿瘤发生中的重要性。
摘要 智能水凝胶是一种智能材料,它可以对环境刺激作出反应来控制药物释放1。这篇综述文章讨论了用于药物输送的智能水凝胶的最新进展,包括热响应1、pH 响应、光响应和酶响应系统。我们重点介绍了它们在癌症治疗、糖尿病管理、伤口愈合和神经系统疾病中的应用。我们还讨论了智能水凝胶的优势,包括提高疗效和减少副作用。最后,我们讨论了该领域的挑战和未来方向。1,2 引言 “智能水凝胶是一类先进的生物材料,可以对温度、pH、光和酶等各种刺激作出反应来控制药物释放。1这些智能材料彻底改变了药物输送领域,提供了前所未有的精度、靶向性和功效。凭借其独特的性能和多功能性,智能水凝胶在治疗从癌症和糖尿病到神经系统疾病和传染病等多种疾病方面显示出巨大的前景3。本综述旨在全面概述用于药物输送的智能水凝胶的最新进展,重点介绍其设计、机制、应用和未来发展方向。”4,5 最新进展 - 用于控制药物释放的热响应水凝胶1 - 用于靶向输送的 pH 响应水凝胶2 - 用于按需释放的光响应水凝胶 - 用于靶向治疗的酶响应水凝胶 用于控制药物释放的热响应水凝胶 热响应水凝胶是一种智能水凝胶,它可以响应温度变化来控制药物释放。1 以下是更详细的概述: 原理 _ 热响应水凝胶由聚合物制成,这些聚合物会响应温度变化而改变其膨胀行为。在低于某个温度(最低临界溶解温度,LCST)时,水凝胶会膨胀并具有亲水性,而在高于 LCST 时,水凝胶会脱水并具有疏水性。1,3,4 机理 1. 在低温下,水凝胶会膨胀,从而可以装载药物。1,6 2. 随着温度升高,水凝胶会脱水,释放装载的药物。8 3. 可以通过调节温度和水凝胶性质来控制药物释放速率。7 优点 1. _控释_:温敏水凝胶可以根据特定的温度变化释放药物。6 2. _靶向递送_:水凝胶可以设计为在具有独特温度曲线的特定部位或组织中释放药物。9 3. _生物相容性_:温敏水凝胶由生物相容性材料制成。7 应用 1. _癌症治疗_:化疗药物的靶向递送 6 2. _糖尿病管理_:胰岛素的控制释放6 3. 伤口愈合:持续释放生长因子和抗生素7
工作记忆等执行性认知功能决定了各种不同认知任务的成败,如解决问题、导航或规划。通过从神经生理或心理生理信号估计工作记忆负荷或记忆容量等结构,自适应系统可以对操作员经历的认知状态作出反应,并触发旨在支持任务执行的响应(例如,当受试者超负荷时简化辅导系统的练习 Gerjets et al., 2014 ,或关闭来自手机的干扰)。确定工作记忆负荷等认知状态也可用于自动测试/评估或可用性评估。虽然目前有大量关于工作记忆活动等认知功能的神经和生理相关性的研究,但很少有出版物涉及将这些研究应用于复杂、现实场景中的单次试验检测和实时估计认知功能。基于脑活动测量的单次试验分类器,例如脑电图 (EEG, Kothe and Makeig, 2011; Lotte et al., 2018)、功能性近红外光谱 (fNIRS, Putze et al., 2014; Herffi et al., 2015)、生理信号 (Fairclough et al., 2005; Fairclough, 2008) 或眼动追踪 (Putze et al., 2013),有可能对情感 (Koelstra et al., 2010; Heger et al., 201
尊敬的出口界成员,今年是出口执法办公室成立 40 周年,感谢拜登总统、雷蒙多部长和美国参议院的支持,我现在有幸以出口执法助理部长的身份负责该办公室的监管工作。自上任第一天起,我们的执法人员和分析师每天所做的工作就给我留下了深刻的印象,他们通过防止敏感的美国商品和技术流向不该流向的人和地方,保护美国人民的安全。我们目前面临的国家安全挑战十分严峻,尤其是中国和俄罗斯等民族国家行为者带来的挑战。但正如过去的一年所表明的那样,出口管制从未像今天这样适合应对这些挑战。例如,在 2022 年 2 月 24 日之后,我们与联盟伙伴迅速作出反应,阻止俄罗斯获得军民两用技术,以支持其对乌克兰的残酷和无端的军事入侵。我们的执法工作旨在确保违反管制的行为受到惩罚,我们的执法工作是强有力的,并且持续不断。我们希望出口界继续采取负责任的行动,与出口执法部门合作,识别可疑的调查,防止未经授权出口到俄罗斯和白俄罗斯。我们还在实施政策变化,旨在最大限度地提高我们的执法工具的有效性。例如,以前当我们
强大的海军对美国的安全至关重要,美国是一个利益遍布全球的国家,其绝大部分贸易都是通过跨洋运输进行的。海军战舰每天每小时都部署在世界各地,提供可靠的“前沿存在”,随时准备在美国利益受到威胁的任何地方作出反应。核推进系统在其中发挥着至关重要的作用,它提供了机动性、灵活性和耐力,而这正是当今规模较小的海军完成越来越多的任务所必需的。海军 45% 以上的主要战斗人员都是核动力的:10 艘航空母舰、53 艘攻击潜艇和 18 艘战略潜艇——其中 4 艘被改装成隐蔽的、大容量的精确打击平台,称为 SSGN。海军核推进计划(也称为海军反应堆)的任务是提供军事上有效的核推进装置,并确保其安全、可靠和长寿命运行。这一任务需要训练有素的美国海军男女官兵与在耐力、隐身性、速度和独立于后勤供应链方面表现优异的舰船相结合。海军反应堆有机法规 50 U.S.C. §§ 2406, 2511 编纂了总统行政命令 12344,规定海军反应堆对海军核推进系统所有方面负有全部责任,包括海军核推进装置的研究、设计、建造、测试、运行、维护和最终处置。T
强大的海军对美国的安全至关重要,美国是一个利益遍布全球的国家,其绝大部分贸易都是通过跨洋运输进行的。海军战舰每天每小时都部署在世界各地,提供可靠的“前沿存在”,随时准备在美国利益受到威胁的任何地方作出反应。核推进系统在其中发挥着至关重要的作用,它提供了机动性、灵活性和耐力,而这正是当今规模较小的海军完成越来越多的任务所必需的。海军 45% 以上的主要战斗人员都是核动力的:10 艘航空母舰、55 艘攻击潜艇和 18 艘战略潜艇——其中 4 艘被改装成隐蔽的、大容量的精确打击平台,称为 SSGN。海军核推进计划(也称为海军反应堆)的任务是提供军事上有效的核推进装置,并确保其安全、可靠和长寿命运行。这一任务需要训练有素的美国海军男女官兵与在耐力、隐身性、速度和独立于后勤供应链方面表现优异的舰船相结合。海军反应堆组织法规 50 U.S.C. §§ 2406, 2511 编纂了总统行政命令 12344,规定海军反应堆对海军核推进系统所有方面负有全部责任,包括海军核推进装置的研究、设计、建造、测试、运行、维护和最终处置。
物理特性与人类表皮相似的有机电子设备正在开发中。[1–4] 此类设备能够与皮肤表面的复杂特征进行非侵入式耦合,用于后续的传感任务。除了为人类开发的系统和相关诊断设备外,分析活植物产生的电信号的方法也引起了从生物学到工程学等领域越来越多的关注。[5–10] 植物通过电信号对不同刺激作出反应,例如触摸、光、伤口或其他压力源(如干燥)。[6] 植物中快速的长距离电通信与较慢的生化信号传导的比较是植物生物学和农业领域的一个重要的研究课题。 [6,11–16] 植物中的电信号在细胞和离子水平上源自与人类和动物神经细胞中不同的机制(动物神经细胞中的去极化是由钠离子的跨膜内流增加驱动的,植物电信号,即动作电位,涉及钙的内流和/或氯离子的外流)。 [17] 有必要进一步了解植物电信号并将其与生理联系起来,因为它可以成为一种工具,例如,用于更好地控制生长,以及通过施肥或施用农药以及光照/水管理来响应植物需求的系统。此外,还有一个不同的领域,试图利用植物的内在功能,如传感、通信、
自激振荡(系统在非周期性刺激下的周期性变化)对于在软机器人技术中创建低维护自主设备至关重要。宏观尺寸的软复合材料通常掺杂有等离子体纳米粒子,以增强能量耗散并产生周期性响应。然而,虽然目前尚不清楚光子纳米晶体的分散体是否可以作为软致动器对光作出反应,但对纳米胶体在液体中自激振荡的动态分析也缺乏。这项研究提出了一种用于照明胶体系统的新型自激振荡模型。它预测热等离子体纳米粒子的表面温度及其簇的数密度在从次声到声学值的频率范围内共同振荡。对自发聚集的金纳米棒的新实验,其中光热效应在宏观尺度上改变了光(刺激)与分散系统的相互作用,有力地支持了该理论。这些发现拓展了目前对自激振荡现象的认识,并预测胶体状态的物质将成为容纳光驱动机械的合适载体。从广义上讲,我们观察到一种复杂的系统行为,从周期性解(霍普夫-庞加莱-安德罗诺夫分岔)到由纳米粒子相互作用驱动的新动态吸引子,将热等离子体与非线性和混沌联系起来。
在当代经济中,人工智能 (AI) 和机器学习 (ML) 算法经常用于生成对就业、教育、融资渠道和其他各种领域具有深远影响的判断。人工智能 (AI) 的不断进步极大地影响了社会和经济的功能,引发了关于人工智能对整个社会和人类的优缺点的广泛争论。此外,ChatGPT(微软)和 Bard(谷歌)等生成人工智能技术的出现,开启了商业运营、通信和研究的巨大变革时代,给人类的使用带来了一些前所未有的挑战。鉴于随之而来的快速转变,本研究从人工智能对人、企业、经济和社会的影响的角度,从道德、法律和治理的角度,批判性地探讨了人工智能的利弊。虽然必须虔诚地促进和保护公共福利,但同样有必要考虑人工智能开发者及其组织的利益和成功。因此,在道德原则之间保持最佳平衡至关重要。我们的研究结果表明,专家们正在倡导一个以功利主义为重点的人工智能伦理时代,它代表着风险和收益之间的平衡,以及从基本注意义务到公共利益民事责任的转变。国家和大陆协会迅速作出反应,在其管辖范围内制定了各种人工智能实施法规。《通用数据保护条例》(GDPR)允许个人就其信息提供一般同意。对人工智能进一步发展的持续投资和研究重点表明,个人生活、企业和经济的未来将不断受到众多日常人工智能功能的影响。