巴基斯坦的马铃薯 ( Solanum tuberosum L.) 种植面临挑战,其中由立枯丝核菌 (Rhizoctonia solani Kühn) 引起的黑痂病是一个严重问题。化学杀菌剂等传统方法可以部分控制该病,但缺乏有效的解决方案。本研究探讨了生物肥料和菊科杂草生物质土壤改良剂在控制该病害方面的潜力。选择了两个马铃薯品种 Karoda 和 Sante,并单独或与苍耳生物质一起测试了两种生物肥料 Fertibio 和 Feng Shou。阳性对照中的病害压力最高,化学杀菌剂可显著降低病害压力。苍耳生物质也显著降低了病害发生率。Fertibio 的效果优于 Feng Shou。施用生物肥料和生物质可以改善植物的生理生化特性。块茎重量、光合色素、总蛋白质含量和抗氧化酶(CAT、POX 和 PPO)呈正相关。Fertibio 和 S. marianum 生物质的联合应用可有效控制黑斑病。这些环保替代品可以增强疾病管理和产量。未来的研究应探索它们的成本效益、商业化和安全性。
学期学时20学期 - VI课程代码课程类型学会时间HQ-006古兰经强制性的翻译1 Chem-319物理化学I-I(化学动力学)强制性2 Chem-320物理化学化学(体温动力学)强制性2化学-321物理化学实验室强制性化学1 Chemistory 1 Chemistor 1 Chemistor 1 Chemistor 1 Comportor 2 Comprions 2 Comportion 1 Chemistor 1 Comportor 2 Comistry 1 Comportor 2 Cosistry 2 Comistry 1 Chemistry 1 Comportion 2 Comistor 2 Chem-323 Inorganic Chemistry-II (f-block elements) Compulsory 2 Chem-324 Inorganic Chemistry Lab Compulsory 1 Chem-325 Organic Chemistry-I (Reaction Mechanisms-I) Compulsory 2 Chem-326 Organic Chemistry-II (Spectroscopy) Compulsory 2 Chem-327 Organic Chemistry Lab Compulsory 1
斯里兰卡拥有理想的气候区,用于生产鲜花和叶子植物。斯里兰卡的花卉行业在最近显示出稳定的增长。两者都需要植物,景观和花卉行业齐头并进。随着该国可用的各种植物物种,这两个行业都将提供赚取外汇和美化该国的机会。对美化环境的需求现在很大且不断增加。作为该研究所一直关注国家重要性领域,BS介绍了硕士学位。在花卉文化和景观建筑中满足这一需求。热带农业的硕士学位课程为热带农业提供了多学科的,面向生产的培训,使参与者在热带地区的农业部门专业活跃。BS还提出了新的学位课程来满足国家需求。
Terms of use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at https://harvardwiki.atlassian.net/wiki/external/NGY5NDE4ZjgzNTc5NDQzMGIzZWZhMGFlOWI2M2EwYTg
也值得注意的是,该国依赖于各种生物技术商品的进口,例如玉米和大豆,这些商品是当地牲畜和家禽行业的关键宏观收益。停止进口这些商品将对这些重要部门产生重大影响,从而提供菲律宾人每日蛋白质需求的主要部分。此外,如果由于缺乏许可证,交易成本增加以及由于与菲律宾交易的风险不断增长的风险越来越高,如果取消货物,国际贸易体系的信誉可能会掩盖该国在国际贸易体系中的信誉。
环境变化和人口增长是农作物生产和整个粮食安全的主要问题。为了解决这个问题,研究人员一直致力于改良谷物和豆类,并在本世纪初取得了相当大的进展。然而,如果没有蔬菜和水果,谷物和豆类加在一起不足以满足人类生活的饮食和营养需求。生产优质的蔬菜和水果极具挑战性,因为它们易腐烂、保质期短,而且在收获前后会遇到非生物和生物压力。通过引入外来基因来生产转基因作物,可以生产出优质、延长保质期和抗逆性、改变开花和果实成熟的时间的转基因作物,这种方法非常成功。然而,一些生物安全问题,如转基因异交风险,限制了它们的生产、营销和消费。现代基因组编辑技术,如 CRISPR/Cas9 系统,在这种情况下提供了一个完美的解决方案,因为它可以生产无转基因的转基因植物。因此,这些基因编辑植物可以轻松满足农作物生产和消费的生物安全规范。本综述重点介绍了 CRISPR/Cas9 系统在成功产生非生物和生物胁迫抗性方面的潜力,从而提高了蔬菜和水果的质量、产量和整体生产力。
印度农业研究理事会 (ICAR) 下属的国家植物生物技术研究所 (ICAR-NIPB) 是印度农业研究理事会 (ICAR) 下属的一家顶级研究机构。该研究所成立于 1985 年,最初名为印度农业研究所 (IARI) 的“生物技术中心”,旨在设计和利用分子生物学工具和技术进行农业研究。对生物技术在农业中的作用的预见使该中心声名鹊起,并于 1993 年升格为国家植物生物技术研究中心,2019 年升格为国家植物生物技术研究所 (NIPB)。国家植物生物技术研究所负责开发新工具和技术,并在植物生物技术领域取得突破,以改良作物。NIPB 的职责之一是培养植物生物技术领域的人力资源。
三十多年来,农杆菌介导的转化技术一直用于树果作物的基因工程。尽管在草本植物和一年生植物的水平上利用这项技术仍然存在许多障碍,但该领域已经取得了很大进展(Song 等人,2019 年)。在本研究主题的第二卷中,有论文描述了不同研究小组正在采取的方法,以促进难处理的树种的遗传转化,并在更基本的层面上了解 T-DNA 插入宿主细胞基因组的机制。在一项优雅的研究中,Gelvin 等人研究了 T 环的形成作为理解 T-DNA 整合的代理。在这项工作中,从转基因植物本氏烟或拟南芥中形成的 T 环中详细描述了与 LB-RB 连接相关的区域。结果表明,T 环中的 RB-LB 连接类似于 T-DNA 和发生整合的植物 DNA 之间的连接。相似之处包括:与 RB 相比,LB 处的缺失频率更高且序列变化更为广泛;连接位点存在微同源性;存在来自农杆菌或植物基因组的填充 DNA;多个 T-DNA 拷贝的多联体组织,其中 RB-RB 和 LB-LB 连接比 RB-LB 连接更常见。此外,作者还表明,T 环的形成即使在农杆菌 VirD2 基因中没有 Ku80 和 w 突变的情况下也能进行,其影响与对 T-DNA 整合的影响相似。根据他们的数据,作者提出 T 环的形成可用于研究 T-DNA 整合到宿主基因组的所有方面。大多数关于柑橘转化的已发表研究都仅使用了少数相对容易转化的品种的材料(Song 等人,2021 年)。 TAMU 的 Mandadi 团队(Dominguez 等人)开发了一种方法,可以促进 14 种柑橘品种的转化。他们通过在转化方案中使用的培养基中添加亚精胺和硫辛酸等补充剂,并使用含有额外 VirG 和 VirE 基因拷贝的辅助质粒 pCH32 来实现这一点。
受控环境农业(CEA)代表了园艺发展最快的部门之一。在受控环境中的生产范围从具有100%人工照明(垂直农场或植物工厂)到具有或没有补充照明的高科技温室,再到简单的温室和高隧道范围。尽管粮食生产发生在高隧道内的土壤中,但大多数CEA操作都使用各种水培系统来满足作物灌溉和生育需求。CEA的扩展提供了有望作为增加城市及其附近粮食生产的工具,因为这些系统不依赖可耕地的农业土地。此外,CEA通过在保护性结构内部生长提供了对气候不稳定的韧性。从CEA系统收获的产品往往具有高质量的内部和外部,并且受到消费者的追捧。目前,CEA生产商依靠在开放式农业中生产的品种。由于CEA的高能量和其他生产成本,只有有限数量的食品作物证明自己是生产的预曲。导致这种情况的一个因素可能缺乏优化的品种。室内生长的操作为这些系统理想的繁殖品种提供了机会。为了促进这些专业品种的繁殖,可以为植物育种者提供多种工具,以帮助加快这一过程并提高其效率。它还回顾了许多可用于基因组知识育种,标记辅助选择的工具,本评论旨在满足繁殖机会和需求,以便在CEA系统中已经生产过多种园艺作物,或者具有CEA生产潜力。
