[52] Lin,C.S.,Hsu,C.T.,Yang,L.H.,Lee,L.Y.,Fu,J.Y.,Cheng,Q.W.,Wu,F.H. S.B.和Shih,M.C。 (2018)原生质体技术与CRISPR/CAS9诱变的应用:从单细胞突变检测到突变植物再生。 植物生物技术杂志,16,1295-1310。 https://doi.org/10.1111/pbi.12870和Shih,M.C。(2018)原生质体技术与CRISPR/CAS9诱变的应用:从单细胞突变检测到突变植物再生。植物生物技术杂志,16,1295-1310。 https://doi.org/10.1111/pbi.12870
收稿日期:2020 - 03 - 25 基金项目:国家统计生物新品种培育重大专项(2018ZX08003 - 03B) 作者简介:李树磊,男,硕士研究生,研究方向:植物分子生物学与基因工程;邮箱:lishuleilsl@163.com 通讯作者:王磊,男,博士,研究员,研究方向:作物功能基因组学;邮箱:wanglei01@caas.cn
活性化因子様エufェクターヌクラーゼ( TALEN )、 CRISPR ( 短簇规则间隔)
全球粮食安全面临严峻挑战,因为预计到 21 世纪中叶世界人口将增长 25%,达到 100 亿 [1]。由于农业用地和淡水有限,需要利用现代农业技术实现更多、更可持续的农作物生产 [2,3]。其中包括开发和利用雄性不育系进行杂交育种和种子生产的更有效的杂种优势利用策略。植物雄性不育是指雌性器官保持正常,而不能形成或释放可育花粉粒。雄性不育突变体含有形态改变的孢子体或配子体花药组织。这些可能是由于植物花药和花粉发育过程中的转录调控、脂质代谢、糖代谢或其他过程存在缺陷所致 [4–6]。雄性不育基因的鉴定和功能分析不仅加深了我们对花药和花粉发育分子机制的认识,而且有利于开发和利用基于生物技术的雄性不育(BMS)系统,用于杂交育种和种子生产[5]。雄性不育可以由细胞质基因或核基因产生。细胞质雄性不育(CMS)由线粒体和核基因控制,在由雄性不育系、保持系和恢复系组成的三系系统中用于商业作物杂交种子生产,尽管它通常存在遗传多样性差、易患疾病以及CMS系恢复不稳定的问题[5]。核控制雄性不育仅由核基因控制,包括遗传稳定的核雄性不育(GMS)和环境敏感的核雄性不育(EGMS)。 EGMS 长期以来一直用于高效生产杂交水稻种子,其双系系统由雄性不育系和保持系组成,而 GMS 只是最近才用于 BMS 系统,例如玉米的种子生产技术 (SPT) 和多控制不育 (MCS) 系统 [7,8]。如上所述,全球粮食安全需要新的有效农业技术(如 BMS 系统)来增加农作物产量。
佛罗里达州的罗马番茄生产本周处于中等水平,大部分收获集中在佛罗里达州。Lipman在Labelle结束了比赛,现在完全在那不勒斯的Roma制作中。果实的尺寸大多要大(L-2X),尽管它比过去一周稍小。质量已显示出改进,目前在整个行业都很好。总体生产预计在接下来的几周内将更轻,因为随着Palmetto/Ruskin的结束,运行范围将减少。但是,Lipman的收获预计将在未来几周内保持稳定。西墨西哥的罗姆人量很强,并且一直保持一致。尺寸对大果实和质量更重。中部/东墨西哥中心也为中等水平的原因贡献了果实。我们预计在接下来的3-4周内,墨西哥的供应状况类似,除非任何天气。
Le Cong, 1,2 * F. Ann Ran, 1,4 * David Cox, 1,3 Shuailiang Lin, 1,5 Robert Barretto, 6 Naomi Habib, 1 Patrick D. Hsu, 1,4 Xuebing Wu, 7 Wenyan Jiang, 8 Luciano Marraffini, 8 Feng Zhang 1 †
摘要 过去二十年,作物改良的若干前沿技术得到了快速发展和应用,这些技术为选择具有更好遗传特性的改良育种系带来了速度、精度和成本效益。需要提及的几项此类技术包括准确、高效地表征不同基因库种质、高通量测序和基因分型、快速世代推进、基于现代测序的性状定位和基因发现,随后识别出优良单倍型、基因组选择、基因编辑、正向育种和多组学方法,包括更好的生物信息学工具/软件。虽然各种性状(尤其是复杂性状)的表型分析方案仍有改进空间,但上述前沿技术为提高开发具有未来性状的新品种的精度和速度提供了巨大的机会,以确保不同作物的可持续性。利用一个共同平台大规模集成和使用这些技术,为作物的可持续发展提供完美支持。