世纪,以富裕和营养食品的养育人群喂养不断增长的人群。除了主要农作物 - 大米,小麦和玉米 - 探索具有更多营养价值的孤儿/天然作物很重要(Chaturvedi等,2022; Chaturvedi等,2023)。生物应激源,包括真菌,细菌,线虫,昆虫和病毒;以及由于气候变化而加剧了土壤中的干旱,热,冷,盐度,流量和养分含量等非生物限制条件(Ghatak等,2017; Chaturvedi等,2021)。开发和利用多种弹性作物对于在所有环境限制下确保粮食安全至关重要。在环境限制下增加高产农作物,这是由于选择中的角色的遗传力较低而令人生畏。确定更多的重要特征可以赋予各种压力的宽容,这是科学家和育种者的主要目标(Roychowdhury等,2020)。因此,我们的研究主题“表征和改善了弹性作物发展的特征”,包括14种手稿,可为作物遗传资源,定量特质基因座(QTL)映射(基因组全基因组关联研究(GWAS),单倍型分析,多摩学分析,多摩学分析,基因发现,表达发现,高级遗传学特征化工具)提供新的见解。植物疾病每年在主要农作物中造成约30%的收益率损失(Gangurde等人)。在当前的气候情况下,许多疾病正在出现,在未来几十年中,农作物的可持续性恶化了(Chakraborty等,2014)。)。gwas已被用来有效发现与多种作物抗病的抗性相关的QTL(Gangurde等人Gangurde等。在过去的二十年中汇编并强调了成功的GWAS研究。他们的研究主要集中于提高通过
©编辑(如果适用)和作者,根据Springer Nature Singapore Pte Ltd.2024的独家许可。这项工作将获得版权。所有权利都是由出版商唯一的,仅由材料的全部或一部分授权的,尤其是翻译,重新使用,插图,朗诵,广播,在微胶片上或以任何其他物理方式复制,以任何其他物理方式复制,以及以任何其他物理方式复制,以及传输或检索,传输和检索,电子适应性,计算机软件,或通过类似的方法,或者是类似的方法,或者现在是相似的方法,或者现在是这些方法。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使在没有具体陈述的情况下,这种名称也不意味着免于相关的保护法律和法规,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。就本文包含的材料或可能已犯的任何错误或遗漏而言,出版商,作者或编辑都没有提供任何明示或暗示的保修。出版商在已发表的地图和机构隶属关系中的管辖权索赔方面保持中立。
三十多年来,农杆菌介导的转化技术一直用于树果作物的基因工程。尽管在草本植物和一年生植物的水平上利用这项技术仍然存在许多障碍,但该领域已经取得了很大进展(Song 等人,2019 年)。在本研究主题的第二卷中,有论文描述了不同研究小组正在采取的方法,以促进难处理的树种的遗传转化,并在更基本的层面上了解 T-DNA 插入宿主细胞基因组的机制。在一项优雅的研究中,Gelvin 等人研究了 T 环的形成作为理解 T-DNA 整合的代理。在这项工作中,从转基因植物本氏烟或拟南芥中形成的 T 环中详细描述了与 LB-RB 连接相关的区域。结果表明,T 环中的 RB-LB 连接类似于 T-DNA 和发生整合的植物 DNA 之间的连接。相似之处包括:与 RB 相比,LB 处的缺失频率更高且序列变化更为广泛;连接位点存在微同源性;存在来自农杆菌或植物基因组的填充 DNA;多个 T-DNA 拷贝的多联体组织,其中 RB-RB 和 LB-LB 连接比 RB-LB 连接更常见。此外,作者还表明,T 环的形成即使在农杆菌 VirD2 基因中没有 Ku80 和 w 突变的情况下也能进行,其影响与对 T-DNA 整合的影响相似。根据他们的数据,作者提出 T 环的形成可用于研究 T-DNA 整合到宿主基因组的所有方面。大多数关于柑橘转化的已发表研究都仅使用了少数相对容易转化的品种的材料(Song 等人,2021 年)。 TAMU 的 Mandadi 团队(Dominguez 等人)开发了一种方法,可以促进 14 种柑橘品种的转化。他们通过在转化方案中使用的培养基中添加亚精胺和硫辛酸等补充剂,并使用含有额外 VirG 和 VirE 基因拷贝的辅助质粒 pCH32 来实现这一点。
学期学时20学期 - VI课程代码课程类型学会时间HQ-006古兰经强制性的翻译1 Chem-319物理化学I-I(化学动力学)强制性2 Chem-320物理化学化学(体温动力学)强制性2化学-321物理化学实验室强制性化学1 Chemistory 1 Chemistor 1 Chemistor 1 Chemistor 1 Comportor 2 Comprions 2 Comportion 1 Chemistor 1 Comportor 2 Comistry 1 Comportor 2 Cosistry 2 Comistry 1 Chemistry 1 Comportion 2 Comistor 2 Chem-323 Inorganic Chemistry-II (f-block elements) Compulsory 2 Chem-324 Inorganic Chemistry Lab Compulsory 1 Chem-325 Organic Chemistry-I (Reaction Mechanisms-I) Compulsory 2 Chem-326 Organic Chemistry-II (Spectroscopy) Compulsory 2 Chem-327 Organic Chemistry Lab Compulsory 1
Terms of use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at https://harvardwiki.atlassian.net/wiki/external/NGY5NDE4ZjgzNTc5NDQzMGIzZWZhMGFlOWI2M2EwYTg
大气数值模型和再分析为各种应用生成了宝贵的天气和气候信息。其中,农业从所提供的数据中获得了相当大的附加值。这些数据允许创建情景和/或集合,以评估源自气候和植物生产方面的复合不确定性。在这项工作中,我们使用两种大气产品和 AquaCrop 模型来研究 2015 年夏季波河谷农业生产对气候条件以及作物类型和灌溉方法的影响和敏感性。这两个产品是一组使用天气研究和预报 (WRF-ARW) 模型的 3 公里分辨率免费模拟,用作灌溉用水需求的情景,以及 6 公里 COSMO-REA6 再分析,提供大气参考数据集。AquaCrop 模型仅强制使用波河谷的农田网格点,我们测试了作物模型对初始土壤水分、灌溉管理、土壤和作物类型等参数的敏感性。初步结果表明,对于小麦而言,产量反应取决于气象输入数据,COSMO-REA6 产量高于 WRF-ARW 产量,并且取决于土壤中的粘土含量。此外,AquaCrop 输出的物理集合(每日水通量、土壤水分和作物产量)将与哥白尼 2015 年的季节性预报产品进行比较
环境变化和人口增长是农作物生产和整个粮食安全的主要问题。为了解决这个问题,研究人员一直致力于改良谷物和豆类,并在本世纪初取得了相当大的进展。然而,如果没有蔬菜和水果,谷物和豆类加在一起不足以满足人类生活的饮食和营养需求。生产优质的蔬菜和水果极具挑战性,因为它们易腐烂、保质期短,而且在收获前后会遇到非生物和生物压力。通过引入外来基因来生产转基因作物,可以生产出优质、延长保质期和抗逆性、改变开花和果实成熟的时间的转基因作物,这种方法非常成功。然而,一些生物安全问题,如转基因异交风险,限制了它们的生产、营销和消费。现代基因组编辑技术,如 CRISPR/Cas9 系统,在这种情况下提供了一个完美的解决方案,因为它可以生产无转基因的转基因植物。因此,这些基因编辑植物可以轻松满足农作物生产和消费的生物安全规范。本综述重点介绍了 CRISPR/Cas9 系统在成功产生非生物和生物胁迫抗性方面的潜力,从而提高了蔬菜和水果的质量、产量和整体生产力。
摘要:花生(Arachis hypogaea L.)是一种全球重要的油籽和豆科粮食作物。然而,最常见的西班牙束状花生品种缺乏鲜种子休眠(FSD),这对花生的产量和质量造成了重大障碍。鉴于其经济意义,目前正在研究模型系统中导致 FSD 的机制和因素,这对花生栽培具有重要意义。最近的评论强调了在揭示遗传控制、分子机制以及影响不同植物物种发芽和休眠的生理和环境因素方面取得的显著进展。在此背景下,我们研究了有关花生 FSD 的最新研究成果,重点关注与 FSD 相关的遗传因素。此外,我们还探讨了旨在培育优良基因型以加强花生改良的尝试。
斯里兰卡拥有理想的气候区,用于生产鲜花和叶子植物。斯里兰卡的花卉行业在最近显示出稳定的增长。两者都需要植物,景观和花卉行业齐头并进。随着该国可用的各种植物物种,这两个行业都将提供赚取外汇和美化该国的机会。对美化环境的需求现在很大且不断增加。作为该研究所一直关注国家重要性领域,BS介绍了硕士学位。在花卉文化和景观建筑中满足这一需求。热带农业的硕士学位课程为热带农业提供了多学科的,面向生产的培训,使参与者在热带地区的农业部门专业活跃。BS还提出了新的学位课程来满足国家需求。
