日期:2024摘要生物技术制造中人工智能(AI)的整合标志着该领域的变革性进步,为创新,效率和精确性提供了前所未有的机会。本文探讨了AI在生物技术制造的各个方面的多面作用,包括药物发现和开发,过程优化,自动化和数据分析。AI驱动的预测建模和高通量筛查正在通过实现个性化医学并加速新疗法的发展来彻底改变药物的发现。在生物处理中,AI增强了监视,质量控制和效果改善,从而导致更有效和具有成本效益的生产。 自动化和机器人技术,由AI提供动力,简化制造过程,减少人为错误并增加吞吐量。 此外,AI能够通过机器学习算法分析大量数据集的能力支持数据驱动的决策,促进创新并改善结果。 尽管有这些好处,但在生物技术制造业中采用AI仍面临诸如数据质量和可用性,与现有系统,监管障碍以及劳动力培训的需求等挑战。 但是,AI技术的持续进步以及AI和生物技术部门之间的合作有望克服这些障碍,为未来的应用铺平了道路,这可能会对全球健康和环境可持续性产生重大影响。在生物处理中,AI增强了监视,质量控制和效果改善,从而导致更有效和具有成本效益的生产。自动化和机器人技术,由AI提供动力,简化制造过程,减少人为错误并增加吞吐量。此外,AI能够通过机器学习算法分析大量数据集的能力支持数据驱动的决策,促进创新并改善结果。尽管有这些好处,但在生物技术制造业中采用AI仍面临诸如数据质量和可用性,与现有系统,监管障碍以及劳动力培训的需求等挑战。但是,AI技术的持续进步以及AI和生物技术部门之间的合作有望克服这些障碍,为未来的应用铺平了道路,这可能会对全球健康和环境可持续性产生重大影响。总而言之,AI在生物技术制造业中具有变革性的潜力,在推动进步和创新的同时,为该行业最紧迫的挑战提供了解决方案。随着技术的不断发展,AI与生物技术之间的共生关系可能会产生新的突破,最终增强了生物技术过程和产品的疗效和效率。
迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典迪金大学,沃恩池塘,维克3216,澳大利亚b食品科学技术系,农业教职员工,马什哈德费尔多夫大学(FUM),马什哈德,伊朗C国际生物研究材料研究中心(ICRI-BIOM研究) - ICRI-BIOM研究-ICRIHIE ZERHIE,LODK,LODA,LODA,LODA,LODA,LODA,lodk 116,90-90-924 Lodz,Poland D洛兹D STEM学院,RMIT大学,墨尔本,VIC 3001,澳大利亚E e生物学与生物工程学系治疗学,默多克大学,珀斯,华盛顿州6150,澳大利亚H边境材料研究所,迪金大学,沃恩池塘,吉朗,维多利亚州吉朗3216,澳大利亚I生命科学系,Chalmers Technology,Chalmers Technology,SE 412 96 Gothenburg,瑞典,瑞典
r TE n ( ω ) M eo,nm ( r , k 3 ) ⊗ M eo,nm ( r ′ , k 3 ) + r TM n ( ω ) Ne eo,nm ( r , k 3 ) ⊗ Ne eo,nm ( r ′ , k 3 )。
已经取得了显着的迈进,该领域显然是由于缺乏高质量数据集而导致的。早期数据集(如Pigraphs [39]和Prox [16])启动了探索,但受到可扩展性和数据质量的约束。MOCAP数据集[14,30]使用Vicon等复杂的设备优先考虑高质量的人类运动限制。但是,他们通常缺乏捕获多样化和沉浸式的HSI。通过RGBD视频录制的可扩展数据集提供了更广泛的实用程序,但受到人类姿势和对象跟踪质量较低的阻碍。合成数据集的出现[1,3,4,55]提供了成本效率和适应性,但无法封装完整的现实HSI频谱,尤其是在捕获动态3D触点和对象跟踪时。为了应对这些挑战,这项工作首先引入了trumans(t rack hum a um a u u u u u u u u u u u u u u a ctio n s in s cenes)数据集。Trumans成为最广泛的运动捕获HSI数据集,涵盖了15个小时以上15个小时的室内场景中的各种相互作用。它捕获了全身的人类动作和部分级别的对象动力学,重点是接触的现实主义。通过将物理环境复制到准确的虚拟模型中,可以进一步增强此数据集。外观和运动的广泛增强都应用于人类和物体,以确保相互作用的高度有限。接下来,我们设计了一个计算模型,通过将场景和动作作为条件同时采取行动来应对上述挑战。我们对杜鲁士数据集和运动合成方法进行了全面的交叉评估。特别是,我们的模型采用自回归的条件扩散,场景和动作嵌入作为征用输入,能够产生任意长度的运动。为了整合场景上下文,我们通过在本地化的基础上查询全局场景的占用来开发有效的场景感知者,这在导航杂乱的场景时表现出了3D感知的碰撞避免的强大效率。为了将框架的动作标签合并为条件,我们将时间特征集成到动作片段中,使模型在粘附在给定的动作标签时随时接受指令。场景和动作条件的这种双重整合增强了我们方法的可控性,为在3D场景中合成合理的长期运动提供了细微的界面。将trumans与现有人物进行比较,我们证明了杜鲁士人明显提高了最先进的方法的性能。此外,我们的方法在定性和定量上进行了评估,超过了现有的运动综合方法,其质量和零击性能力在看不见的3D场景上,非常接近原始运动捕获数据的质量。除了运动合成之外,杜鲁士人已经针对人类的姿势和接触估计任务进行了基准测试,证明了其多功能性并将其确立为一系列未来的研究努力的宝贵资产。
参考文献 [1] Litjens, G., Et Al. (2017)。“医学图像分析中的深度学习调查。”医学图像分析,42,60-88。 [2] Esteva, A., Et Al. (2021)。“深度学习支持的医学计算机视觉。”自然生物医学工程,5(6),541-551。 [3] Haidegger, T. (2021)。“人工智能驱动的机器人手术:趋势、进步和挑战。”IEEE 生物医学工程评论,14,27-45。 [4] Ferguson, S., Et Al. (2019)。“用于预测神经外科术后并发症的机器学习模型。”神经外科评论,43(4),891-900。 [5] Bricault, I., Et Al. (2021)。 “人工智能驱动的机器人神经外科手术:技术和临床结果。”《神经外科杂志》,135(2),543-553。[6] Shen, D. 等人(2019 年)。“医疗保健中的人工智能:个性化和精准医疗。”《自然医学》,25(1),44-56。[7] Senders, JT 等人(2018 年)。“神经外科中的机器学习:一项全球调查。”《神经外科评论》,41(3),585-594。[8] Senders, JT 等人(2020 年)。“用于神经外科结果预测的人工智能。”《柳叶刀数字健康》,2(7),E352-E361。[9] Topol, EJ(2019 年)。“高性能医疗:人类与人工智能的融合。” Nature Medicine,25(1),44-56。[10] Rudin,C.(2019)。“停止解释高风险决策的黑箱机器学习模型,并使用可解释的
前启示性(PE)是妊娠20周后发生的产科疾病。它被认为是“伟大的产科综合症”之一,主要有助于孕产妇的发病率和死亡率。PE与一系列免疫疾病有关,包括TH2细胞上的T助手(Th)1的优势以及TH17和T调节细胞(Tregs)的不平衡水平。在怀孕期间,T细胞在参与妊娠并发症(例如PE)的同时,保护胎盘免疫排斥和辅助胚胎植入。促进同种抗原特异性细胞是PE的潜在预防和治疗策略。但是,确保母亲和婴儿的安全至关重要,因为生殖和产科疾病的风险收益比与构成威胁生命的风险的免疫疾病的风险相比显着不同。在这篇综述中,我们系统地总结了T细胞免疫在外周血,生殖组织以及PE患者的母亲狂热界面中的作用。此外,对靶向PE中T细胞免疫的最新治疗方法进行了严格评估。
CD24 是一种存在于细胞表面的蛋白质,在癌细胞的增殖、侵袭和扩散中起着至关重要的作用。它通过糖基磷脂酰肌醇 (GPI) 粘附在细胞膜上,与癌症患者的预后和存活率有关。CD24 与存在于自然杀伤细胞和巨噬细胞等免疫细胞上的抑制性受体 Siglec-10 相互作用,从而抑制自然杀伤细胞的细胞毒性和巨噬细胞介导的吞噬作用。这种相互作用有助于肿瘤细胞逃避免疫检测和攻击。尽管将 CD24 用作癌症免疫疗法的免疫检查点受体靶标仍处于早期阶段,但临床试验已显示出令人鼓舞的结果。靶向 CD24 的单克隆抗体已被发现具有良好的耐受性和安全性。其他临床前研究正在探索使用嵌合抗原受体 (CAR) T 细胞、抗体-药物偶联物和基因疗法来靶向 CD24 并增强对肿瘤的免疫反应。总之,本综述重点介绍了 CD24 在免疫系统中的作用,并为 CD24 作为癌症免疫治疗的有希望的免疫检查点提供了证据。
[1] V. Komandla,“制定清晰的路径:利用工具和软件实现有效的路线图可视化。”[2] V. Komandla,“通过持续反馈集成增强产品开发‘Vineela Komandla’。”[3] V. Komandla,“增强金融科技的安全性和欺诈预防:安全在线开户的综合策略。”[4] V. Komandla,“增强安全性和增长:评估金融科技公司的密码保险库解决方案。”[5] V. Komandla,“战略功能优先级:通过以用户为中心的路线图实现价值最大化。”[6] V. Komandla,“转变金融互动:移动银行应用程序设计和功能的最佳实践,以提高用户参与度和满意度。”[7] V. KOMANDLA,“克服金融科技在线开户的合规挑战”,教育研究(IJMCER),vol.1,no.5,页01-09,2017。
虽然 KCC 并不直接规划输电,但我们广泛参与 SPP 活动。这包括在区域州委员会 (委员 Andrew French) 和成本分配工作组 (前委员 Shari Feist Albrecht) 中保留堪萨斯州代表。 我们还监督和参与以下 SPP 利益相关者小组:市场工作组、区域关税工作组、供应充足性工作组、改进资源可用性工作组、运营可靠性工作组、区域分配审查工作组、综合规划流程工作组等。 KCC 确实根据 KSA 66-131 监管在堪萨斯州拥有和运营输电的证书的授予,并根据 KSA 66-1,177-KSA 66-1,180 监管输电线路的选址。
