201617 年是弗吉尼亚州最新 HPV 疫苗接种状况增幅最大的一年,也是所有疾病控制与预防中心 (CDC) 获奖者中 > 1 种 HPV 疫苗接种年均增幅最大的一年。
文章标题:药物重新培训中的机器学习和人工智能 - 挑战和观点作者:Ezequiel Anokian [1],Judith Bernett [2],Adrian Freeman [3],Markus List [2],LucíaPrietoSantamaría[4],Auntorrarhman Tanoli [4] Bonnin [1]分支机构:发现与转化科学(DTS),Clarivate Analytics,巴塞罗那(西班牙)[1],《系统生物学数据科学》,慕尼黑技术大学,慕尼黑技术大学,德国(德国)[2] Biopharmaceuticals R&D,阿斯利康,剑桥(英国)[3],EscuelaTécnicasuperior de gegenierossismorlosinformáticos,Madrid大学(西班牙)大学(西班牙) (FIMM),Hilife,Hilife,赫尔辛基大学(芬兰),Bioicawtech,赫尔辛基(芬兰)[5] [5] Orcid ID:0000-0003-0694-1867 [1] [1],0000-0001-501-5812-8013 [2] 0000-0002-0941-4168 [2], 0000-0003-1545-3515 [4], 0000-0003-2435-9862 [5], 0000-0001-5159-2518 [1] Contact e-mail: Sarah.bonnin@clarivate.com Journal: Drugrxiv review statement:手稿目前正在审查中,应由酌处权对待。手稿提交日期:2024年3月12日关键字:机器学习,神经网络,人工智能,药物repurost
文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
从内容节制到野生动植物保护,需要模型识别细微或主观的视觉概念的应用数量正在增长。传统上,开发用于此类概念的分类器需要在数小时,天甚至数月内衡量的大量手动努力来识别和注释培训所需的数据。即使最近提出的敏捷建模技术可以快速地进行图像分类器的快速启动,但仍需要用户花费30分钟或更多的单调,重复的数据标签,以训练一个罪恶的分类器。利用了Fiske的认知灾难理论,我们提出了一个新框架,通过用自然语言相互作用代替人类标签,从而减少了由自然语言相互作用,从而减少了通过一个数量级来定义的总体努力所需的总体努力:从将2,000张标记的图像定义为只有2,000张图像到只有100张图像到100次自然语言相互作用。我们的框架利用了大型语言模型和视觉语言模型的基础模型的最新进展,以通过对话和自动标记培训数据点来雕刻概念空间。最重要的是,我们的框架消除了对人群来源注释的需求。此外,我们的框架最终生产出在成本敏感的方案中可部署的轻量级分类模型。在15个主观概念和2个公共图像分类数据集中,我们训练的模型的表现优于传统敏捷建模以及最先进的零拍模型,例如Align,clip,cupl,Cupl和大型视觉问题回答诸如Pali-X之类的模型。
我们将提供空间供您展示您的产品。如有任何疑问或想安排会议,请随时通过 pjbinu@cdac.in 与我们联系,Binu PJ,组织秘书,科学家 E/联合主任,CDAC Trivandrum 健康技术组,电话:9496236198。
人工智能独立于人类的创造性投入而运作,所创作的作品如果仅由人类创作,则有资格获得版权。这是因为人工智能创作的作品与人类创作的作品基本难以区分。人工智能创作的此类作品有很多,包括小说和新闻文章等文学作品、绘画和肖像等艺术作品以及音乐作品等。3 这些人工智能创作的类人作品的例子提出了版权法下的重要问题。人工智能创作的作品可以被视为原创吗?人工智能可以被视为作品的作者吗?根据版权法,通常,作品的作者也被视为作品的第一所有者。4 如果人工智能被视为作品的作者,那么人工智能可以被视为作品的所有者吗?或者,如果人工智能不被视为作品的作者或所有者,谁应该是作品的作者和所有者?应该是人工智能的用户、程序员还是数据供应商?本文从不同类型的人工智能的角度对该问题进行了详细分析,为现有的争论做出了贡献。本文对印度版权法下可能的解决方案提出了建议,同时批判性地分析了 1957 年《版权法》第 2(d)(vi) 条。它还从版权法依据的角度分析了人工智能程序员和用户的版权所有权问题。
2018 年台风飞燕侵袭日本大阪湾,造成关西国际机场被淹,暴露出沿海机场在极端天气面前的脆弱性。1 此次事件凸显了在海平面上升和风暴加剧的情况下重新评估基础设施恢复力的迫切需要。1,2 案例事实:2018 年 9 月 4 日,台风飞燕袭击日本大阪湾,风速 130 英里/小时,风暴潮高达 11 英尺,关西国际机场完全被淹没。3 关西国际机场建在大阪湾的一个人工岛上。1 风暴潮彻底冲击了海堤,淹没了跑道,导致 8000 名乘客和工作人员被困。此外,一艘被台风吹偏的油轮摧毁了通往大陆的唯一桥梁,进一步切断了机场与大陆的联系。1 超过 8000 名乘客和机场工作人员被困近 36 个小时。不幸的是,台风导致该地区11人死亡,400多人受伤。2 国内航班在两天后部分恢复,但完全恢复需要数周时间。4 事件的流行病学方面:《日本许多主要机场接近海平面,这是一场灾难》这篇文章是一项描述性分析,而非流行病学研究。1 在考察台风飞燕对关西国际机场的影响以及气候风险对航空的影响时,没有采用结构化的研究设计或相对风险 (RR) 或优势比 (OR) 的参数模型。相反,本文讨论了案例比较,并在一个框架内引用了过去的极端天气事件和地理空间数据,强调低洼机场仍然很脆弱。虽然作者提供了气候模型预测,但他们没有对混杂因素(例如基础设施抵抗力和灾害响应)应用回归模型或统计控制。 1 文章中潜在的偏见来源源于选择偏见,因为所讨论的机场都是主要的国际枢纽机场,而分析并未考虑可能同样面临气候相关风险的小型区域机场。2 没有控制混杂变量,例如风暴防备、基础设施弹性或政府应对政策,而这些是决定机场脆弱性的主要因素。5 文章概括地表明,气候变化会给机场带来洪水风险,但遗憾的是,它没有提供评估该风险的模型证据或比较结果。 文章没有明确说明如何处理与缺失数据相关的潜在数据缺口。1 然而,鉴于这是一项新闻研究而非科学研究,机场洪水事件的历史数据少报或缺失可能会影响分析的全面性。事件管理: 公共卫生部门对台风“飞燕”的响应主要包括疏散、恢复服务并长期承担灾害损失。4 由于台风造成严重洪涝,主通道桥梁无法通行,日本政府和关西国际机场当局协调安排包租紧急渡轮和巴士疏散了8000名滞留旅客。2,4 然而,由于机场的防洪设施无法抵御这场创纪录风暴带来的洪流,防灾准备工作显得不足。交通中断以及缺乏直接的应急计划,进一步影响了当时的应对工作。
<关于AI开发相关的著作权作品的学习> 人们担心,经过多年精心创作的独特作品可能会被机器学习并轻易创作出类似的作品。 - 人工智能本身对社会来说是必要的,学习人工智能不应该被全面禁止。对于学习阶段的抄袭,需要明确日本的版权法是否真的比其他国家宽松。至少它的制度比美国更严格。海外对《AI天堂》的一些批评存在误解,有必要作出正确解释。 * 我想知道我们的版权材料是否真的正在被研究。事实上,其中一些甚至没有网上的数字数据。此外,主要的人工智能公司都在海外。 ※有些作品除非将数字数据本身发布到网上,否则无法公开。我想了解防止机器学习的技术和方法。如果在技术和服务方面也有措施确保这一点,那就令人放心了。对于受版权保护的作品,如果它们作为学习数据集出售,我们认为未经许可复制此类数据集本身是不允许的。 * 人们担心网上发布的盗版版本会受到研究。 - 商业人工智能开发者未经许可研究受版权保护的作品,且不向版权所有者支付任何补偿,这是不公平的。 - 海外也有通过集中管理运营商等综合许可的方式发放许可,并获得报酬的情况。从每家人工智能相关企业获得许可会比较困难,但有人可能会说,如果某个组织或其他实体颁发了综合许可证,就不会施加权利限制。 〇我希望可以选择退出基于人工智能的学习。 我们应该尊重版权持有者的意愿,而人工智能出现偏见也是不可避免的。我们呼吁审查当前的权利限制,使其与人工智能技术的发展相协调,同时不妨碍创作者的权利。有人说,要阻止人工智能,哪怕意味着停止科学、停止技术、停止文明。 - 看起来像是现存作者的作品,以表达对现存作者的尊重。创意世界通过这些所谓作者身份的传承而发展起来。因此,他认为学习是一件积极的事情,因为这意味着他的写作风格将会被传承下去。
●针对MTA合并性PRMT5抑制剂(在第1/2阶段试验中)的基因表达,蛋白质组学,shRNA敲低和广泛的重新利用数据集相关性,据报道优先针对MTAP-MTAP-浸没细胞活性。●分别具有PRMT5和MTAP的化合物靶标和预期的生物标志物是最强的命中率之一,与Prism中的复合响应相关
