在过去的几十年中,数字和模拟集成电路的集成密度和性能经历了一场惊人的革命。虽然创新的电路和系统设计可以解释这些性能提升的部分原因,但技术一直是主要驱动力。本课程将研究促成集成电路革命的基本微制造工艺技术,并研究新技术。目标是首先传授构建微型和纳米器件的方法和工艺的实际知识,然后教授将这些方法组合成可产生任意器件的工艺序列的方法。虽然本课程的重点是晶体管器件,但许多要教授的方法也适用于 MEMS 和其他微型器件。本课程专为对硅 VLSI 芯片制造的物理基础和实用方法或技术对器件和电路设计的影响感兴趣的学生而设计。30260133 电子学基础 3 学分 48 学时
(!“#$”%&'%()#'*+),“ - +。“#+”)#/ 0“ 1)%$ 2”#$'&345*。+*,3“ ##*5,6)#。) div>- $)$“ 7#.6”%*。
感谢您有机会提交HB 3247的证词。我写信反对该法案。是波特兰州立大学化学的教授(名誉),也是《从知识到权力》的《气候变化科学/政策文本》的作者,该文本在俄勒冈州广泛流传。我反对这项法案,因为它反对俄勒冈州持续的努力将电网过渡到可靠且无碳的电力。该计划所设想的将破坏电网运营商完成工作的能力。首先,该法案中简单的一对一公式,必须通过将某些电力来源的退休与在线某些新来源相匹配,这显然与总体监管方案不符,通过该方案,通过该方案,通过该方案,通过该方案,通过该方案,通过该方案,通过该方案,通过该方案,通过该方案,通过该方案,通过该方案确保了可靠的网格。重要的是网格在任何时候和地方提供可靠的功率的能力,这是可用电源,新一代,退休和传输功能的复杂功能。在任何特定的时间和地点,即使没有立即更换,也可能需要退休设施 - 例如,如果有良好的需求管理,包括太阳能电池板等幕后资源,则不必损害可靠性。第二,80%的“绩效标准”似乎是任意的,在法规中不确定。这是一个容量因素吗?如果是这样,该法案似乎是一种明显的尝试,试图防止风能和太阳能替代汽油动力的发电,这是俄勒冈州所必需的,以满足俄勒冈州法律中现已嵌入的气候目标。该法案的作者显然担心可靠性。,但他们似乎没有意识到,即使后一种设施的个体容量因素较低,也有两种主要方法可以保留可靠性,而天然气的产生则被风和太阳能取代。首先,俄勒冈州正在将其网格连接到将跨越许多西方国家的区域网络,包括引入日期的电力市场。这些广泛的资源将包括大量新的电力存储能力。第二,虚拟发电厂涵盖了各种各样的“仪表后面”属性,例如太阳能电池板,家用太阳能电池,社区太阳能,智能电器和双向EV充电也将有助于创建强大的网格。
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
(b),6.000 nm(c),8.900 nm(d)和9.300 nm(e),其中颜色表示不同的局部晶体结构:蓝色-BCC,绿色-FCC,RED-HCP和White-Inninnown; (f)在1860 PS和d = 9.300 nm的纳米线内的应变分布,其中原子是通过其局部剪切应变颜色的。
Robert Tampé ORCID: 0000-0002-0403-2160 Goethe University Frankfurt tampe@em.uni-frankfurt.de Professor of Biochemistry, Biocenter phone: +49-(0)69-798 29475 Institute of Biochemistry, Director fax: +49-(0)69-798 29495 max-von-laue-str。9,60438 Frankfurt/m。,德国https://biochem.uni-frankfurt.de位置| Academic Career 2001-present Full Professor / Director, Institute of Biochemistry, Goethe University Frankfurt 1998-2001 Full Professor / Director, Physiological Chemistry, Medical Faculty, University Marburg 1996-1998 Assistant Professor in Biochemistry / Biophysics, Technical University (TU) Munich 1996 Habilitation in Biochemistry, TU Munich 1992-1998 Max Planck Research Group Leader, MPI of Martinsried 1992-1998生物化学独立研究小组领导人,Tu Munich 1990-1991 Max Kade奖学金,斯坦福大学Max Kade奖学金(与Harden M. McConnell),美国,1987- 1989年,1987 - 1989年在生物化学中,具有最高荣誉的生物化学(Summa cumaude)的生物化学(cuma cumstadt)1981-191-191-191-191-191-191-191-1997,刺激Darmstadt9,60438 Frankfurt/m。,德国https://biochem.uni-frankfurt.de位置| Academic Career 2001-present Full Professor / Director, Institute of Biochemistry, Goethe University Frankfurt 1998-2001 Full Professor / Director, Physiological Chemistry, Medical Faculty, University Marburg 1996-1998 Assistant Professor in Biochemistry / Biophysics, Technical University (TU) Munich 1996 Habilitation in Biochemistry, TU Munich 1992-1998 Max Planck Research Group Leader, MPI of Martinsried 1992-1998生物化学独立研究小组领导人,Tu Munich 1990-1991 Max Kade奖学金,斯坦福大学Max Kade奖学金(与Harden M. McConnell),美国,1987- 1989年,1987 - 1989年在生物化学中,具有最高荣誉的生物化学(Summa cumaude)的生物化学(cuma cumstadt)1981-191-191-191-191-191-191-191-1997,刺激Darmstadt
• 量子环境下的超奇异椭圆曲线 (SSEC):随着量子计算的发展,传统的 ECC 可能会因 Shor 算法等量子算法而变得脆弱。SSEC 提供了一种潜在的解决方案,可以更好地抵御量子攻击。这些曲线利用超奇异椭圆曲线之间的同源性,创建了当前量子算法无法有效解决的复杂结构,使 SECC 成为后量子密码学的理想候选者。
• 2009 年 9 月 - 2013 年 12 月,第 650 军事情报大队/盟军指挥部反间谍行动主任和高级文职人员,欧洲盟军最高司令部,比利时蒙斯 • 2012 年 3 月 - 2012 年 9 月,第 650 军事情报大队/盟军指挥部反间谍行动联盟特遣部队主任,国际安全援助部队,阿富汗喀布尔 • 2002 年 6 月 - 2009 年 8 月,美国陆军 G2X 陆军反间谍协调局调查和行动主管,弗吉尼亚州贝尔沃堡 • 1994 年 6 月 - 2002 年 6 月,美国陆军对外反间谍活动第 14 支队调查主管,第 902 军事情报大队,马里兰州米德堡 • 1990 年 9 月 - 1994 年 6 月,美国陆军对外反间谍活动反间谍特工,在坦帕外地办事处值班联邦调查局,佛罗里达州坦帕市 • 1985 年 7 月 - 1990 年 9 月,反间谍特工,美国陆军外国反间谍活动,在德国威斯巴登和慕尼黑值班 • 1983 年 9 月 - 1985 年 7 月,反间谍特工,第 766 军事情报支队,第 66 军事情报组,德国西柏林 大学: