计算机科学是 UCF 的强项学科之一。计算机科学博士课程不仅是佛罗里达州第一个计算机科学博士课程,也是 UCF 的首个博士课程。根据 2024 年 US News 的最新报告,UCF 的计算机科学课程在全美排名第 70 位。计算机科学领域的研究实力主要基于在各自领域的顶级国际会议上发表论文的表现。根据该指标(csrankings.com),UCF 的计算机科学课程在大类中排名第 55 位。计算机科学在计算机视觉(#7)、机器学习(#43)、计算机安全(#50)、生物信息学(#29)和计算机架构(#23)方面拥有强大的研究领域。计算机科学还因其两届卫冕全国冠军网络防御团队的成功以及其编程团队在地区、国家和世界比赛中的出色战绩而闻名。研究赞助商包括 NSF、NIH、NASA、DOT、DARPA、ONR 和其他国防部机构。行业赞助商包括 AMD、波音、佳能、艺电、通用动力、哈里斯、日立、英特尔、洛克希德马丁、甲骨文、SAIC、赛门铁克、丰田美国和华特迪士尼世界,以及当地初创公司。有关该部门的更多信息,请访问 https://www.cs.ucf.edu/ 。
本手册为行政,工程和技术人员提供了指导。工程实践要求专业人员在决策中使用技术技能和判断的结合。工程判断对于允许决策来考虑独特的特定地点条件和考虑因素,以在预算范围内提供高质量的产品,并保护公共卫生,安全和福利。本手册提供了一般操作指南;但是,据了解,有时需要适应,调整和偏差。创新是推动工程实践状态并开发更有效和有效的工程解决方案和材料的关键基础要素。因此,我们的工程手册至关重要的是,在维持公众的安全,健康和福利的同时,我们必须提供促进,试点或实施提供效率和优质产品的技术或实践的工具。在与这些指导材料的技术信息造成重大或有影响力的偏差时,与专家,技术委员会和/或政策设定机构的合理咨询发生在允许的时间范围内之前发生。也可以预期,这些咨询将消除任何潜在的利益冲突,感知到或以其他方式。MDOT领导力致力于创新文化,以优化工程解决方案。国家专业工程师协会的工程道德准则是建立在六个基本规范上的。这些佳能在下面提供。工程师在履行其专业职责时应:
方法:此校准方法已被设计为易于重现和优化,从而减少了所需的时间和成本。它是基于原始设置,其中包括使用浓度分离器来测量从时间强度曲线(AUC)下从面积(AUC)获得的谐波信号强度的变化作为各种对比剂浓度的函数。分离器提供了4种不同的浓度,同时从Sonovue™对比剂的初始浓度的12.5至100%不等(Bracco Imaging S.P.A.,米兰,意大利),在单个注射中测量4个AUC。AUC的图作为四个对比剂浓度的函数表示谐波信号的强度变化:斜率是校准参数。通过这种方法的标准化暗示,两代超声扫描仪都必须具有相同的斜率为校准。此方法已在同一制造商(Aplio500™,Aplioi900™,佳能医疗系统,日本东京)的两个超声扫描仪上进行了测试。APLIO500™使用了最初的多中心DCE-US研究定义的设置。已经调整了Aplioi900™的机械索引(MI)和颜色增益(CG),以匹配Aplio500™的颜色。根据测量可重复性评估了新设置的可靠性,一旦对两个超声扫描仪进行校准,获得的测量值之间的一致性可重复性。
1 阿拉巴马州伯明翰市阿拉巴马大学伯明翰分校医学中心 2 威斯康星州斯科菲尔德市阿斯皮鲁斯沃索医院 3 德克萨斯州贝莱尔市独立顾问 4 宾夕法尼亚州立大学 宾夕法尼亚州赫尔希市 5 耶鲁纽黑文医院和耶鲁大学医学院 康涅狄格州吉福德市 6 明尼苏达州罗切斯特市梅奥诊所 7 美国食品药品监督管理局器械和放射健康中心 马里兰州银泉市 8 宾夕法尼亚州费城托马斯杰斐逊大学 9 独立 — 无关联 康涅狄格州西哈特福德市 10 德克萨斯大学 MD 安德森癌症中心 德克萨斯州休斯顿市 11 独立 — 无关联 密歇根州莱克林登市 12 威斯康星大学 威斯康星州麦迪逊市 13 俄克拉荷马大学健康科学中心 俄克拉荷马州俄克拉荷马市 14 康涅狄格州韦斯顿市 15 马什菲尔德诊所 威斯康星州马什菲尔德市 16 DeltaStrac LLC 马里兰州克拉克斯堡市 17 Varex 影像公司 纽约州彭菲尔德市 18 独立顾问,南卡罗来纳州辛普森维尔 19 佳能医疗研究美国公司,伊利诺伊州弗农山
• 教育 – 麦考瑞大学是澳大利亚一流的研究机构之一,其 MBA 课程在澳大利亚名列前茅。 • 研究与开发 – 麦考瑞公园内的许多企业和机构都投资于研究,包括与麦考瑞大学的合作。其他研究人员包括雅培澳大利亚公司和 AC 尼尔森研究公司等公司。 • 知识密集型行业 – 制药、媒体、技术和电信行业的重要集群。 • 医疗服务 – 麦考瑞大学医院(澳大利亚第一家也是唯一一家完全综合的学术健康科学中心)位于麦考瑞公园区内。凭借这些主要的经济功能和当地工人的才能,麦考瑞公园拥有大量企业集群,包括:• 医疗和制药(阿斯利康、百健、科利耳、强生、雅培、赛诺菲)• 媒体、技术和电信(戴尔、施耐德电气、Meridian IT Australia、Optus、爱立信、Foxtel、澳大利亚广播网、麦考瑞公园数据中心)• 数字(佳能、富士通、柯尼卡美能达、施耐德电气、飞利浦、松下等)• 运输和物流(新南威尔士州交通、现代、沃尔沃、起亚、CHEP 等)• 先进制造和技术(3M、BAE 系统、Boc Ltd、Memjet、Ecolab Australia、宝洁澳大利亚等)• 其他(孩之宝、Arbonne 化妆品、Aristocrat、雷神澳大利亚、Relyon Australia 等)
摘要 逻辑、存储器、光子、模拟和其他增值功能的异构集成是提高电子系统效率、性能和带宽同时有助于降低总体制造成本的一种方法。为充分利用异构集成的优势,设计人员需要更精细分辨率的重分布层图案和更大的封装尺寸,以最大限度地提高系统级封装集成的可能性。大封装电子系统的生产非常适合面板级封装 (PLP),而在整个矩形面板上实现均匀的亚微米图案化是一项关键的光刻挑战。为应对这一挑战,佳能开发出第一台能够在 500 毫米面板上实现亚微米分辨率的光刻曝光系统或步进机。步进机具有面板处理系统,可处理最大尺寸为 515 mm x 515 mm 的面板,还配备了宽视场投影镜头,其最大数值孔径为 0.24,像场为 52 mm x 68 mm。本文将报告使用面板步进机的亚微米 PLP 工艺的评估结果,并介绍高分辨率 PLP 工艺的挑战,包括翘曲面板处理。将报告覆铜板 (CCL) 基板的工艺结果,包括图案均匀性、相邻镜头拼接精度和包含扇出工艺中常见的芯片放置误差的基板上的叠加精度。关键词先进封装、扇出、面板级封装、步进机、亚微米、光刻、系统级封装
目的:我院于2021年2月引进的计算机断层扫描(CT)设备增加了利用人工智能(AI)技术的新型图像重建方法。这种重建方法被称为深度学习重建(Deep Learning Reconstruction,以下简称DLR),佳能称之为高级智能Clear-IQ引擎(Advanced intelligent Clear-IQ Engine,以下简称AiCE)。本研究的目的是评估各重建方法的物理特性和实用性,例如利用AI技术的新型图像重建方法AiCE和目前我院使用的迭代重建方法自适应迭代剂量减量3D(以下简称AIDR 3D)。 方法:通过(1)噪声评估(使用径向频率法测量噪声功率谱(NPS))、(2)低对比度分辨率评估(使用自制模型测量对比度噪声比(CNR))和(3)空间分辨率评估(使用圆边缘法测量调制传递函数(MTF))(1)来评估物理特性。假设成像条件为腹部区域,改变管电流来比较四种重建方法(滤波反投影 (FBP)、AIDR 3D Mid、AIDR 3D 增强 Mid 和 AiCE Body Mid)。 结果:在 NPS、CNR 和 MTF 测量中,AiCE 通常在所有 mAs 值下均显示出最佳结果。然而,在 NPS 测量的低频区域,AiCE 与其他重建方法相比并没有表现出显著差异。 此外,当比较 AIDR 3D 和 AiCE 的重建时间时,AiCE 所花的时间是 AIDR 3D 的 3 到 4 倍。 结论:本研究中,AiCE 在腹部条件下检查的三个物理特性方面优于 AIDR 3D,并且在图像质量方面有用。然而,在考虑重建时间时,需要考虑AiCE图像的运行可能会影响检查进度的可能性。
1 IBM 9477 4% 2 三星电子 8735 9% 3 佳能 4102 15% 4 英特尔 3680 8% 5 微软 3144 32% 6 通用电气 3110 19% 7 华为 2938 33% 8 联合技术公司 2847 31% 9 LG 电子 2810 13% 10 丰田 2705 6% 11 索尼 2675 24% 12 Alphabet 2621 0% 13 福特 2519 17% 14 苹果 2512 15% 15 亚马逊 2504 18% 16 戴尔 2482 18% 17 高通 2376 0% 18 台积电 2352 -6% 19 京东方 2190 33% 20松下 2033 8% 21 西门子 1684 18% 22 爱立信 1613 17% 23 现代 1561 1% 24 日立 1546 18% 25 东芝 1495 -11% 26 强生 1474 44% 27 AT&T 1455 14% 28 美敦力 1446 10% 29 波音 1433 14% 30 通用 1404 17% 31 富士 1375 11% 32 精工爱普生 1346 5% 33 三菱电机 1333 12% 34 Facebook 1317 78% 35 霍尼韦尔 1295 13% 36 富士通 1282 -1% 37 美光1276 37% 38 罗伯特·博世 1272 -2% 39 电装 1218 5% 40 荷兰皇家飞利浦公司 1194 -10% 41 哈里伯顿 1112 25% 42 本田 1104 15% 43 京瓷 1085 2% 44 思科 1049 21% 45 NEC 1011 22% 46 理光 994 -6% 47 惠普公司 959 31% 48 村田制作所 933 25% 49 诺基亚 905 1% 50 德州仪器 902 13%
前排,从左到右:Marc Delassus,Sle Valois Sud Oise; Ludovic佳能SLE HighDeûle; Pascal DeGrelle Sle Valenciennes Sambre Avesnois; Dominique Raman Sle Lille; Sleme somme est的监督委员会的Mathilde Roy副主席; Patrice Duvauchelle的工作人员;尼古拉斯·德尔考(Nicolas Delcourt)雇员理事会代表; Jean-Claude Josinski Sle Hauts de l'Aisne; Karine Iasoni,Sle douaisisCambrésis; SLE SAINT-AMER CALAIS监事会的StéphanePottez副主席; Rachel Monteiro,Sle Arras LensLiévin; Didier Pignat,Sle给du Beauvaisis付费;斯利法恩·梅莱特(StéphaneMaillet),萨尔·海上; Nathalie Pischedda,SleCompiègne这两个山谷; Xavier Veracx SleBéthunebruay。第二行,从左到右:斯特凡·莱德斯(StéphaneLedez),萨尔·法兰德斯(Sle Flanders);克里斯汀·贝恩(Christine Beun),萨尔·法兰德斯(Sle Flanders)大都会; Delphine Poix,雇用的代表;劳伦斯·莱杜克斯(Laurence Ledoux),SLE付费D'Opale;西尔万·罗伯特(Sylvain Robert),短期和互惠代表性结构; Sle FlandreMétropolises监事会主席Philippe Lamblin。照片中缺少:Alain Herreng,Sle Amiens Somme Est;阿斯特里德·莫杜(Astrid Maudu),萨尔·索姆(Sle Somme)大沿岸; Marie-ThérèsePiekacz,Sle Aisne Champenoise; Corinne Wisnietski,Sle Saint-Amand Denain;劳伦特·莱克勒克(Laurent Leclercq)
半导体光刻设备行业已经发展到仅凭技术知识不足以在市场上生存的地步。要充分了解光刻行业的动态,必须具备一套跨学科的技能。了解基础技术、制造设备市场的管理问题以及行业赞助的联盟的作用对光刻行业都至关重要。20 世纪 80 年代中期,半导体光刻设备市场发生了巨大转变,引发了美国政界的愤怒。从 20 世纪 70 年代末到 80 年代末,美国公司的市场份额从近 90% 下降到不到 20%。半导体市场的快速扩张,尤其是在日本,再加上美国光刻供应商对客户要求的明显反应迟钝,为尼康和佳能提供了机会之窗。此外,制造光刻设备所需的技术专长日益迫使全球半导体制造商从供应商处购买设备,而不是内部开发。在 20 世纪 90 年代,美国半导体制造商已经适应了光刻设备采购的新市场条件。光刻技术对半导体制造过程仍然至关重要。由于只能从供应商处购买光刻设备,制造商被迫制定有效的技术供应链管理策略。在技术开发周期的推动下,半导体公司有四年的时间来学习和不断改进其采购策略。由于依赖供应商,半导体公司的设备采购策略已调整为最大限度地提高供应商转换灵活性,同时最大限度地减少资本支出。这种方法促使许多制造商建立首选供应商关系和工具,以确保供应商之间的竞争行为。行业目标:确保尖端光刻技术的持续发展。本报告对各公司如何组织其设备开发和采购实践及其各自的优点进行了基准测试。