获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要。本文重点研究历史手写结婚记录中的信息提取。传统方法依赖于两个连续任务的顺序流水线:在命名实体识别之前应用手写识别。最近,人们研究了同时处理这两个任务的联合方法,并取得了最先进的成果。然而,由于这些方法已在不同的实验条件下使用,因此尚未对它们进行公平比较。在这项工作中,我们对基于相同基于注意的架构的顺序和联合方法进行了比较研究,以量化可归因于联合学习策略的收益。我们还研究了三种基于多任务或多尺度学习的新联合学习配置。我们的研究表明,依靠联合学习策略可以使完整识别分数提高 8%。我们还强调了多任务学习的兴趣,并展示了基于注意的网络对信息提取的好处。我们的工作在 Esposalles 数据库上的 ICDAR 2017 信息提取竞赛中以行级实现了最先进的性能,无需任何语言建模或后处理。