在将设备连接到交流电源输入和电池电源之前,必须先接地。本设备配有 EMC 滤波器。接地漏电流范围为 0 至 1000 mA。在选择瞬时 RCCB 或 RCD 设备时,应考虑设备启动时可能出现的瞬态和稳态接地漏电流。必须选择对单向直流脉冲 (A 类) 敏感且不受瞬态电流脉冲影响的 RCCB 设备。还必须考虑到负载接地漏电流将由 RCCB 或 RCD 承担。设备必须按照当地电气规范接地。
研究了功率 AlGaN/GaN HEMT 系列的击穿失效机制。这些器件采用市售的 MMIC/RF 技术与半绝缘 SiC 衬底制造。在 425 K 下进行 10 分钟热退火后,对晶体管进行了随温度变化的电气特性测量。发现没有场板的器件的击穿性能下降,负温度系数为 0.113 V/K。还发现击穿电压是栅极长度的减函数。在漏极电压应力测试期间,栅极电流与漏极电流同时增加。这表明从栅极到 2-DEG 区域的直接漏电流路径的可能性很大。漏电流是由原生和生成的陷阱/缺陷主导的栅极隧穿以及从栅极注入到沟道的热电子共同造成的。带场板的器件击穿电压从 40 V(无场板)提高到 138 V,负温度系数更低。对于场板长度为 1.6 l m 的器件,温度系数为 0.065 V/K。2011 Elsevier Ltd. 保留所有权利。
摘要 — 过去十年,碳化硅 (SiC) 功率金属氧化物半导体场效应晶体管 (MOSFET) 的商业化不断扩大。栅极氧化物可靠性是 SiC 功率 MOSFET 的主要问题,因为它决定了器件的使用寿命。在这项工作中,我们研究了商用 1.2 kV SiC 功率 MOSFET 在不同栅极电压下的栅极漏电流。高氧化物电场引发的碰撞电离和/或阳极空穴注入 (AHI) 导致空穴捕获,从而增强了栅极漏电流并降低了器件的阈值电压。由于 Fowler-Nordheim (FN) 隧穿而产生的电子注入和捕获往往会降低栅极漏电流并增加阈值电压。还对商用 MOSFET 进行了恒压时间相关电介质击穿 (TDDB) 测量。栅极漏电流的结果表明,场加速因子的变化是由于高栅极氧化物场下栅极电流/空穴捕获增强所致。因此,建议在低栅极电压下进行 TDDB 测量,以避免在正常工作栅极电压下高估寿命。
• 赞布替尼 (zan” ue broo' ti nib) 是一种用于治疗某些类型癌症的药物。它是一种口服胶囊。 • 在服用赞布替尼之前,请告知医生您是否曾对赞布替尼产生过异常或过敏反应。 • 治疗期间可能会定期进行血液检查。根据检查结果和/或其他副作用,您的治疗剂量和时间可能会发生变化。 • 严格按照医生的指示服用赞布替尼非常重要。确保您了解说明。 • 您可以随餐或空腹服用赞布替尼。 • 如果您每天服用一次赞布替尼,并且漏服了一剂,请在漏服后 12 小时内尽快服用。如果距漏服时间已超过 12 小时,请跳过漏服剂量并恢复正常服药时间。不要服用双倍剂量来弥补漏服剂量。
由于大量患者因充血性心力衰竭 (CHF) 住院,早期识别和干预变得越来越必要。了解和识别预示容量超负荷的体征和症状可让医生及早提供护理并可能避免住院。尽管多年来一直有轶事观察,但 CHF 加重时出现的鼻漏尚未被视为临床相关症状。1,2 在本例中,我们观察到患者新发鼻漏与胸腔阻抗变化和容量超负荷之间存在直接关联。随后发生 CHF 加重发作并住院,因此提示特发性鼻漏是容量超负荷的征兆。
硅基氮化镓高电子迁移率晶体管 (HEMT) 以其低成本、大面积应用等优势在功率器件应用领域引起了广泛关注 [1]。近年来,双向开关在轧机、电梯、风力发电等许多工业双向功率转换应用中备受青睐。此外,常闭单向 HEMT 是实现高性能双向开关的重要器件 [2,3]。常闭单向 HEMT 通常通过在 HEMT 的漏极中嵌入肖特基势垒二极管 (SBD) 来实现。目前已经采用了氟注入或金属氧化物半导体技术。然而,在常闭单向 HEMT 中尚未见具有良好阈值电压 (V th ) 可控性和稳定性的 p-GaN 栅极技术 [4] 的报道。此外,凹陷式肖特基漏极[5]和场板技术[6]可以为实现具有小开启电压(V on )、高击穿电压(BV)和良好动态性能的单向HEMT提供相关参考。本研究通过实验证明了一种具有凹陷肖特基漏极和复合源漏场板的单向p-GaN HEMT(RS-FP-HEMT)。研究并揭示了漏极电压应力对动态性能的影响。实验。图1(a)和(b)分别显示了传统的带欧姆漏极的p-GaN HEMT(C-HEMT)和提出的RS-FP-HEMT的示意横截面结构。这两个器件都是在GaN-on-Si晶片上制造的。外延结构由 3.4 µ m 缓冲层、320 nm i-GaN 沟道层、0.7 nm AlN 中间层、15 nm Al 0.2 Ga 0.8 N 阻挡层和 75 nm p-GaN 层(Mg 掺杂浓度为 1 × 10 19 cm −3)组成。器件制造首先通过反应离子刻蚀 (RIE) 形成 p-GaN 栅极岛。然后,蒸发 Ti/Al/Ni/-Au 金属堆栈并在 N 2 环境中以 850 ◦C 退火 30 秒。形成凹陷的肖特基漏极
近年来,微电子技术发生了巨大的变化,现代 CMOS 技术使集成电路的性能和复杂性稳步提高。图 1(a) 显示了传统 n 型体硅 MOSFET 的示意图,它由 p 型衬底内重度 n 型掺杂的源极和漏极区组成。此外,MOSFET 的栅极电极长度为 L,宽度为 W,栅极电极通过厚度为 d ox 的绝缘体(通常为 SiO 2 )与体硅衬底绝缘。源极-通道和通道-漏极界面处的两个 pn 结(见图 1(b))可防止电流从源极流向漏极。施加正栅极电压 V gs > V th ,会在通道/栅极氧化物界面处创建反型层(p 型衬底中的电子)。在这种情况下,如果施加额外的漏极-源极偏压 V ds,电流就可以流过该器件。
• PMOS 选择 1. PMOS 的阈值电压 |V th | 的绝对值需要足够小,以便运算放大器能够打开和关闭 PMOS 栅极。 2. PMOS 的零栅极电压漏极电流 (I DSS ) 定义栅极电压等于 V bus 时的漏电流。I DSS 设置较低的 V out 范围。 3. 如果从运算放大器输出 (V o ) 到栅极的线路电阻过大,则 PMOS 栅极电容会影响稳定性。此电容在 1/ ꞵ 曲线中增加了一个零点。如果零点位于 1/ ꞵ 和 Aol 截距点的左侧,相位裕度会减小。因此,最好使用小的栅极电容。 4. 根据军用标准,漏极-源极击穿电压必须是 V bus 的两倍,至少需要 200V 的击穿电压。
当同步整流管完全开启后, VDS 两端压降完全跟 随次级电流 Is 。随着次级续流电流的减小 VDS 电压升 高,当 VDS 电压增大到 -30mV 时, Gate 驱动电路的 上管供电被关断 , 驱动电压随内部电阻及漏电流开始缓 慢降低;当 VDS 电压增大到 -20mV 时, Gate 驱动电 压会被钳位在 3.3V 左右。如果 VDS 电压增大到 -1mV 时, WS2260C 会在 25ns 的时间内快速将 GATE 电压 拉到 0V 。同时,关断屏蔽时间开始计时,此期间 GATE 保持低电平。直到 VDS 电压大于 2V ,退出关断屏蔽 计时。
由于即将进入安慰剂阶段,可靠性降低的风险迫在眉睫。但是,通过调整服药时间表,仍然可以防止避孕保护降低。因此,通过遵循以下两种选择中的任一种,无需采取额外的避孕预防措施,前提是女性在漏服第一片药之前的 7 天内已正确服用所有药片。如果不是这种情况,应建议女性遵循这两个选项中的第一种,并在接下来的 7 天也采取额外的预防措施。1. 女性应在记起时立即服用最后一片漏服的药片,即使这意味着同时服用两片药片。然后,她继续在平常的时间服药,直到所有活性药片都用完。最后一排的 4 片白色药片(安慰剂药片)必须丢弃。必须立即开始服用下一包。使用者不太可能在第二包活性药片用完之前出现撤退性出血,但在服药日她可能会出现点滴出血或突破性出血。 2. 还可能建议女性停止服用当前一盒药片。然后她应停药 4 天,包括漏服药的天数,然后继续服用下一盒药片。如果女性漏服药片,随后在第一个正常的停药间隔内没有出现撤药性出血,则应考虑怀孕的可能性。