4教授,雷基金会Arihant药房摘要摘要急救药物的及时管理可以在医疗紧急情况下挽救生命,例如过敏和低血糖。但是,服用这些药物通常需要针头自我注射,这对于紧急情况下的患者可能很难。作为一种解决方案,我们提出了一种能够通过非侵入性的,简单的磁铁从皮肤外部使用磁铁,能够施用急救型药物(例如肾上腺素和胰高血糖)等植入式装置。该设备被称为具有磁性旋转磁盘(IMRD)的可植入设备。IMRD包含一个带有磁体和多个用膜密封的药物储层的磁盘。该膜设计仅在施加外部磁铁时才以精确的角度旋转。在此旋转过程中,指定的单颗库库上的膜被对齐并撕裂,以将药物暴露于外部。当植入活着的动物中时,IMRD可以输送肾上腺素和胰高血糖素,类似于常规的皮下针注射。该设备在医疗紧急情况下提供了一种更简单,更有效的方法来管理急救药物,尤其是对于无法自我注射的患者。
甜菜根是一种营养来源,其中包含大量的贝塔利亚和类胡萝卜素以及生物活性化学物质。甜菜根约为2-3%的纤维,8%的碳水化合物和87%的水。将果胶,酸和糖等关键成分掺入了强化的甜菜根和橙色果冻中。因为它含有活性化学物质,维生素和矿物质,因此在60:40的比例为60:40的甜菜根果冻的本研究已与Beetroot作为基础成功完成,以增加价值。选择橙色是因为它具有较大的果胶含量,并且是钾,钙,维生素C和维生素A的良好来源。它增加了运动能力,降低了血压并增强了心脏。它具有386 kcal的能量,79%的碳水化合物,37%的浮子和6.5 mg的维生素A和C-14。当前研究的目的是在成品中产生Orbeet Jelly及其感觉属性。使用61%的糖,0.5%的柠檬酸和2%果胶,成功产生了果冻。果冻是使用橙色和甜菜根的益处有效地创建的,并且具有不错的营养价值。所有年龄段的人都可以从中受益以保持免疫力。有水果,这是健康生活方式的基本必需品,因为它们为人体提供必要的营养并预防疾病。知道水果的重要性,这是我们研究创建健康混合水果果酱的动机,特别是通过使用猕猴桃和黄瓜的美味组合。由于黄瓜和猕猴桃被证明具有出色的营养含量,我们想到了使用它们。鉴于这些事实,我们现在正在考虑含有饮食纤维,维生素C和维生素K的猕猴桃的使用,以及在维生素A,C和K中丰富的黄瓜,并且本质上是水分的。这两种水果增加了这种果酱的营养含量,除了使其具有凉爽的味道。我们在实验中测试的猕猴桃和黄瓜的比率是:100%猕猴桃对照,50%猕猴桃和50%黄瓜,70%猕猴桃和30%黄瓜,以及30%猕猴桃和70%黄瓜。我们掺入了柠檬酸,苯甲酸钠和工业果胶,以改善果酱的质地和防腐剂。基于一项详细的研究,我们发现使用50%猕猴桃比(T1)制备的果酱具有独特的理化特性。它的总糖的分数较低,但是可滴定的酸度,总可溶性固体,水分,pH和抗坏血酸水平较高。由于这些特性,它具有平衡的营养概况,因此对于寻求健康的人来说是一个绝佳的选择。我们通过对风味,香气,质地和普遍的可接受性进行感觉评估来确保果酱的感觉吸引力。在所有感官类别中,T1 JAM得分最高,这反映出它在测试的人中是最可接受的。其鲜艳的绿色颜色分别带有L*,A*和B*值为32.41,-2.29和9.51的值,加起来将使消费者沉迷于其乐趣。最后,我们的研究表明了基于猕猴桃的果酱的营养卓越和感官喜悦,尤其是变体T1。在现代时代,通过科学方法制作果酱,果冻,水果棒和其他水果产品,它为人们带来了新的收入来源。这些水果产品不仅呈现高营养含量,而且还提供了建立小型企业的盈利能力。这项研究的目的是生产不同的水果产品以及涉及保存和加工它们的技术,重点关注Soneratia apetala水果制备的果冻,该水果在印度的Sundarbans中广泛使用。这种果冻的原始材料S. apetala果肉在季风季节很容易获得,并且富含维生素C. Sundarbans的三角洲综合体可能支持具有适当存储和营销连接的小型红树林企业。
技术4 SRM科学技术研究所计算技术系助理教授摘要Ayurveda是经过时间测试的医疗系统,传统上提供个性化的医疗保健。最近,使用AI的医学建议增长了,但关于印度草药药的探索并不多。通过我们的论文,我们计划实施和探索阿育吠陀医学建议,以及机器学习如何通过根据患者数据推荐个性化的阿育吠陀治疗方法来增强这种方法。我们提出了一种使用机器学习方法(例如决策树和神经网络)首先诊断的系统,然后推荐天然药物。此外,我们的主要目的是探索医学建议中机器学习原理的潜力。通过整合机器学习技术,这项研究寻求桥梁传统的阿育吠陀智慧与现代机器学习之间的差距。本研究中采用的主要方法涉及使用患者数据培训神经网络模型并预测药物。拟议的系统有可能提高医疗保健的可访问性和功效,尤其是在个性化的阿育吠陀建议下。关键字:阿育吠陀,机器学习,推荐系统,决策树,神经网络1。简介
摘要。由重金属造成的污染是我们环境的主要问题,因为这些金属的高水平对野生动植物,植被和人类健康产生有害后果。即使在痕量中,几种重金属,包括铅,汞,镉,锌,砷和镍,不仅具有致癌特性,而且具有引起遗传突变的能力。在这项研究中,总共分离了150种细菌,其中25种用于次级筛查。次级筛选后,根据其最大公差水平进一步处理五个菌株。根据表型和基因型特征分离并鉴定出所需的本土金属固醇菌株并鉴定。系统图的表型特征和拓扑结构证实细菌分离株1磅是kingella sp。,2磅是李斯特菌。,3磅是芽孢杆菌。,4磅是假单胞菌putida,而5磅是Cupriavidus Necator。根据结果,在使用LB培养基时,所有细菌分离株均显示出对不同重金属浓度的最高公差水平,即1 lb和4 lb细菌分离株显示对铜(CU)的耐受速率最高,而2LB和5LB细菌分离物显示出对铬的最大耐受性(CR)抗病率(CR)和3LB细菌率(peb)和3LB细菌率(peb)和3LB细菌。因此,将LB培养基用于优化生物修复目的。关键字:可朗吉工业区,重金属污染的土壤,土壤污染,金属固醇的土著细菌,生物修复用于对重金属污染的土壤进行生物修复,最大去除效率为PB的4磅细菌菌株的83.80%,CU的5磅细菌菌株的90.49%,YPG培养基中CR的1磅和2LB细菌菌株的81.87%和81.87%。因此,结果表明该地区的土著重金属耐受性细菌菌株可用于生物修复重金污染的土壤,这是最有效,经济和环保的方法,可作为传统方法的替代方法。
摘要。在此项目中,通过考虑硬件和软件体系结构以及电子通信协议,同时提出了采用机器人操作系统的同时本地化和映射机器人的设计和实现。机器人的目的是创建一个未探索的未知室内环境的二维图,以自主浏览并定位对象。问题非常具有挑战性,尤其是当全球定位系统停止在室内地区工作时。为了解决该问题,使用了室内映射和定位技术。它结合了全球定位系统的功能和精确的映射。此技术提供了实时映射和位置信息跟踪的能力。它们是实现它的几种方法,其中包括一些传统方法磁性定位,无线电波和射频标记。我们提出的机器人模型使用同时定位和映射技术来有效地图和本地化。系统组成了理想的机器人车,可以帮助减少映射任何环境并定位对象所需的时间,这是通过算法后的地标提取,路径计划和路径来完成的。通过使用此技术获得的地图将授予处理地图数据的路径规划,并给出最佳的最短路径距离,在该路径计划中,机器人可以自动导航并定位对象。