Figure 1-1 Evolution of electromobility [1] .................................................................................... 3 Figure 1-2 Schematic diagram of a Li-ion battery and main reactions [2] .................................... 4 Figure 1-3 Schematic diagram of a PHEV pack manusfactured by A123 Sysems .......................... 6 Figure 2-1 Single particle model (on the right) based on沿X轴完全电化学模型的空间离散化(左侧)。每个电极只有一个粒子,我们可以将每个节点的值视为电极上的平均数量[22]。............ 13 Figure 2-2 Different types of battery models used in battery management systems (Single particle and Pseudo-two dimensional models from [24]) ........................................................................... 15 Figure 2-3 Concentration gradient through the sphere, representing the single particle model .16图2-4 G(S)及其近似H(S)的比较。........................................................ 16 Figure 2-5 Comparison of fractional transfer function and its approximation in a frequency domain limited to the range including the BMS sampling frequency (approx.70 rad.s -1)。........... 18 Figure 2-6 Block diagram implementation of the electrical fractional model .............................. 18 Figure 2-7 OCP curves of Anode (left) and Cathode (right) against the respective lithiation degree ............................................................................................................................................. 21 Figure 2-8 Validation results of applying extended Artemis drive cycle to the fractional 模型 。23图2-9电压模型和分数电池模型的绝对估计误差和订单7 ECM的各自的绝对估计误差。................................................................................................................................................ 48 Figure 4-6 SDI 28 Ah cell opening at BOL ................................................................................... 52 Figure 4-7 SDI 28 Ah cell opening at EOL ................................................................................... 52
摘要:本文提出了电池电量状态(SOC)的能源管理策略,该策略使用层次分布式模型预测控制(HDMPC),用于在太阳能驱动的长期持续飞机上独立的微电网。微电网的创新设计是两层结构,其中第一层由名为PV电池模块(PBM)的光伏生成和电池存储系统组成。第二层称为微电网子系统(MGSS),由几个PBM组成,每个PBM都为飞机上的特定DC负载提供了功率。控制系统分为两个级别:网格级模型预测控制(MPC)和转换器级MPC。网格级MPC采用分布式模型预测控制策略,以获得每个模块的参考功率。使用监督模型预测控制(SMPC)策略,转换器级MPC计算转换器的控制变量。新的微电网结构和提议的控制策略提高了能源系统的可靠性,并提高了其能量利用率。