锂离子电池(LIB)用于为从便携式消费电子设备到电动汽车和网格式储能系统的一系列应用。现在,随着LIB在高功率和复杂应用中的越来越多的应用,预测可靠操作的剩余使用寿命(RUL)并保护电池组免受包括灾难性故障在内的不必要的事件,这是非常重要的。关于RUL的实时信息对于预测电池故障状况至关重要,导致预防有效或至少减少电池故障可能造成的损坏。此外,准确的Rul对于在其使用寿命结束时安排常规维护和必要的更换非常有帮助。因此,RUL预测已成为研究人员兴趣的话题。在过去的十年中提出了几种RUL估计技术,基于机器学习(ML)的技术在准确性,适应性和建模方面表现出了优越性。因此,基于ML的RUL预测方法是根据本文中的基本绩效参数对其基本性能参数进行了全面审查的。还提出了有关问题,挑战,趋势和未来研究范围的详细讨论,以向研究人员提供明确的指南。
锂电池已被广泛用作新能量,以应对环境和能量的压力。锂离子电池的剩余使用寿命(RUL)的预后已经变得更加关键。方便的电池寿命预测允许早期发现性能定义,以帮助迅速维护电池系统。本文提出了一个基于降解轨迹和多个线性回归的坐标重新构造的锂离子电池的RUL预后模型。首先,使用新的采样规则来重新配置新电池的退化数据的坐标和截短的类似电池。然后,使用重新配置数据建立了相似和新的锂离子电池之间的关系。此外,通过考虑时间变化因素的影响,建立了基于降级轨迹和多线性回归的坐标重新配置和多线性回归的新的RUL预后模型,该模型可以通过小样本数据来提高预测准确性,并有效地减少产品开发时间和成本。
摘要 — 预测具有有限衰减历史的锂离子电池的剩余使用寿命 (RUL) 至关重要,因为它可以确保及时维护电动汽车并有效重复使用二次电池。考虑到现实的电池运行条件,本文研究了在目标电池衰减历史有限的情况下在部分充电和放电条件下的 RUL 预测。鉴于其能够告知特征重要性,采用随机森林来帮助对不同的电池测量进行优先排序,并确定准确预测 RUL 所需的最少运行数据量。通过使用一个完整的充电和放电循环检查预测性能,结果表明充电和放电的持续时间、使用容量和电压信号包含与电池 RUL 相关的重要特征。在荷电状态 (SOC) 不确定性下,还研究了部分充电和放电下的预测性能,结果表明,在 SOC 范围 [0.2,0.8] 内收集的数据可实现令人满意的性能。与现有的使用四个完整充电和放电循环的卷积神经网络方法相比,验证了所提方法增强的板载可行性。对 SOC 范围的敏感性分析表明,SOC 范围 [0 . 1 , 0 . 2] 内的数据包含磷酸铁锂电池最丰富的 RUL 相关信息。对具有不同化学性质、环境温度和 C 速率的电池进行广泛验证进一步证明了所提方法的稳健性。
重型机械的维护是任何制造过程的最关键因素之一,这仅仅是因为以最佳的操作效率保持运行时。维护工程师基于日常操作计划的工作订单严格参与各种计划的维护。预防性,纠正性,预定,基于条件和反应性是通常维护的维护工作单的不同类型。但是,随着物联网(物联网)传感器和算法的出现,以及最先进的技术,许多组织正在采用预测性维护来预先确定维护需求。此外,采用下一代AI(人工智能)技术,可以提前估算操作机器的寿命。
在这个瞬息万变的时代,限制气候变化和实现可持续增长的迫切需要加强全球能源转型的势头。“氢经济时代”正在走进人类的视野,朝着建立更清洁的能源系统的方向发展[1]。在此背景下,燃料电池被视为最大限度发挥氢能潜在效率优势的首选技术[2]。质子交换膜燃料电池(PEMFC)目前是轻型车辆和物料搬运车辆的领先技术,在固定式和其他应用领域也占有较小份额[3]。然而,成本和耐久性两个主要挑战限制了其大规模商业化[4]。当前PEMFC系统耐久性和可靠性不理想可能导致高维护成本[5],而非优化运行可能是导致意外停机和部件进一步退化的关键原因[6]。人们做出了许多努力来提高其耐久性:改进材料、减少退化原因、改进结构设计、实施新的监督和管理设计等。预测和健康管理 (PHM) 是一门新兴学科,最初源自基于状态的维护 [ 7 ],已被用于监测和预测 PEMFC 系统的健康状况 [ 8 , 9 ]。人们已经研究了针对 PEMFC 的各种预测方法
致谢 ii 序言 iii 表格列表 v 图表列表 vi 缩写列表 vii 摘要 viii 1. 介绍 1 2. 锂离子电池退化 4 2.1. 特性 4 2.2. 模式和机制 5 2.2.1. 阳极退化 6 2.2.2. 阴极退化 8 2.2.3. 非活性材料退化 10 2.2.4. 高阶退化 11 3. 关键退化变量 13 3.1. 温度 13 3.2 充电状态 14 3.3 充电速率 16 4. 电池制造商建议 19 4.1. 手机 19 4.2.笔记本电脑 20 4.3. 电动工具 22 4.4. 电动汽车 23 4.5. 比较制造商说明和学术文献 25 5. 电池寿命改进 28 5.1. 电池寿命改进的好处 28 5.2. 电池管理系统和健康状态监测的作用 29 5.3. 用户行为 30 5.3.1. 温度建议 31 5.3.2. 充电状态建议 31 5.3.3. 当前建议 33 5.3.4. 其他建议 33 6. 结论 34 参考文献 36
可再生能源系统的快速发展需要先进的维护和优化策略,以确保长期的运营效率和可持续性。传统方法通常无法预测故障并优化多样化和动态可再生能源基础设施的性能。本研究探讨了人工智能 (AI) 技术在可再生能源系统的预测性维护和优化中的应用,旨在提高运营效率并延长系统寿命。我们采用多种机器学习算法,包括深度神经网络和强化学习,来开发预测模型和优化策略。这些模型是在从运营中的风电场、太阳能装置和水力发电厂收集的大规模数据集上进行训练的。我们的结果表明,与传统方法相比,人工智能驱动的方法可以以 92% 的准确率预测设备故障,将计划外停机时间减少 35%。此外,人工智能优化的运行参数使所研究系统的整体能源输出提高了 8.5%。所提出的框架还显示出对各种环境条件和系统配置的适应性,表明其在可再生能源领域具有广泛的适用性。这项研究强调了人工智能在彻底改变可再生能源系统的维护实践和运营策略方面的巨大潜力,为更可靠、高效和可持续的清洁能源生产铺平了道路。
摘要 — 为了防止电力电子系统中发生灾难性故障,已经确定了多种故障前兆来表征功率器件的退化。然而,在确定支持高精度剩余使用寿命 (RUL) 预测的合适故障前兆方面存在一些实际挑战。本文提出了一种充分利用潜在故障前兆来制定复合故障前兆 (CFP) 的方法,其中 CFP 直接根据退化模型进行优化以提高预测性能。明确推导了退化模型的 RUL 估计值,以方便前兆质量计算。对于 CFP 公式,采用遗传规划方法以非线性方式整合潜在故障前兆。结果,阐述了一个可以为给定的 RUL 预测模型制定出更好故障前兆的框架。通过 SiC MOSFET 的功率循环测试结果验证了所提出的方法。
锂离子 (Li-ion) 电池是现代电力系统不可或缺的部件,但其性能会随着时间的推移而下降。准确预测这些电池的剩余使用寿命 (RUL) 对确保电网的可靠高效运行至关重要。在此基础上,本文提出了一种新的 Coati 集成卷积神经网络 (CNN)-XGBoost 方法,用于锂离子电池的早期 RUL 预测。该方法采用 CNN 架构,通过图像处理技术自动从电池放电容量数据中提取特征。从 CNN 模型中提取的特征与基于电池充电策略信息从前 100 个电池测量循环数据中提取的另一组特征相连接。然后将这组组合的特征输入 XGBoost 模型进行早期 RUL 预测。此外,Coati 优化方法 (COM) 用于 CNN 超参数调整,以提高所提出的 RUL 预测方法的性能。数值结果揭示了所提出方法在预测锂离子电池 RUL 方面的有效性,其中 RMSE 和 MAPE 分别获得了 106 次循环和 7.5% 的值。
大麻在全球范围内广泛使用,但其与健康结果的联系尚未完全了解。DNA甲基化可以作为将环境暴露与健康结果联系起来的介体。我们在荟萃分析中进行了一项对周围性基因组的关联研究(EWA)(EWAS),其中包括9436名参与者(7795名欧洲和1641名非洲祖先),对七个同类的荟萃分析进行了基于外周的DNA甲基化和终生使用大麻的使用(vs.从未)。考虑了吸烟的影响,我们的跨性ewas荟萃分析显示,以0.05 p <5:85 ´107Þ的虚假发现率,与终身大麻的使用显着相关的CPG站点显着相关ACTN1和CG01101459在Linc01132附近。此外,我们在从未抽烟的参与者中进行的EWA分析,这些香烟识别出另一个遍及均质的CPG位点,CG14237301注释给APOBR。,我们使用了一项淘汰方法来评估构成的甲基化评分,该评分是构建的,是CPGS的加权总和。最佳模型可以解释使用寿命大麻的3.79%。这些发现揭示了与寿命使用大麻相关的DNA甲基化变化,这些变化与吸烟无关,并且可以作为进一步研究大麻暴露会影响健康结果的机制的起点。