摘要我们使用时间分辨的红外红外振动光谱法研究了多共符型型延迟荧光(TADF)分子DABNA-1中的光物理特性与激发态详细特性之间的相关性。与密度功能理论计算相比,指纹区域的独特振动光谱与1000-1700 cm -1的模拟光谱相比,我们发现了最佳的计算条件。根据计算,我们确定了最低激发单元(s 1)和三重态(t 1)状态的激发态几何和分子轨道以及基态(s 0)。我们揭示了t 1和s 0之间电势表面的相似性抑制了非辐射衰减,并通过TADF工艺引起高荧光量子产率。
摘要:本文提出了一种准量化的小信号模拟方法,以预测DC-DC降压转换器的低频辐射发射。通过小信号分析有效地替换瞬态分析的模拟方法,并讨论了对低频辐射发射的环境影响。通过为TPS54560类型开关IC进行的评估板上执行的测量和模拟来提出该方法的效率和准确性。模拟结果非常适合DC-DC转换器模块的辐射发射性能。使用拟议的方法,可以在不使用时间消耗瞬态分析的情况下实现快速准确的参数结果。关键字:电磁兼容性,模拟,辐射发射,DC-DC转换器
研究了液晶环氧树脂 (LCER) 的蠕变行为,并将其与由相同环氧单体制备的非 LCER 进行了比较。使用 Burgers 模型评估实验数据以解释液晶 (LC) 相的增强作用。使用时间-温度叠加原理预测材料的长期性能。结果表明,在树脂网络中引入 LC 相可以降低材料的蠕变应变和蠕变应变率,尤其是在高温下。从模拟中提取的参数表明,LC 相的存在增强了树脂的瞬时弹性、阻滞弹性和永久流动阻力。提出用刚性填料效应和交联效应来解释增强机制。
还必须评估 AI 工具在具体案例中的表现。例如,AI 系统应容忍何种程度的错误(包括假阳性和假阴性)?答案可能取决于几个因素,例如错误对个人和执法资源造成的后果的严重性;AI 系统分析的个人信息的敏感性;以及在没有 AI 系统的情况下使用的调查流程的相对准确性、成本、可扩展性或速度。性能可以在实验室(部署前)和现场进行评估,在这两种情况下,用于确定最低准确度的阈值和因素可能不同。工具的使用时间也可能很重要,因为机器学习系统的性能通常会随着使用而提高。
印度寻求更进一步,实现塑料循环经济。循环经济将尽可能少地使用原生塑料,同时尽可能长时间地保留材料在经济中的价值。它将用替代材料替代原生塑料,延长塑料材料的使用时间,收集废弃塑料和报废塑料,并将其回收用于下一次使用。这将促进良好的健康和可持续的生活方式,符合印度政府在 2021 年 11 月 1 日 COP26 上提出的 LiFE(环境生活方式)干预战略行动。最后,路线图可以支持印度政府和行业协会响应预计于 2024 年生效的联合国全球塑料条约的要求。
微生物挑战研究中的研究是为了评估第一次穿刺后无防腐剂的单剂量生物学产品中微生物增殖的潜力,并在剂量制备过程中进行了潜在的意外污染(例如重建,稀释)和存储。除了物理化学中使用稳定性评估外,这些研究还用作产品注册的一部分,以定义处方信息和药学手册中的使用时间。某些卫生当局建议进行微生物挑战研究研究(例如FDA要求在2-8°C或室温下大于4小时的持有时间)。如果微生物挑战数据不足或不可用,则允许的内存时间将减少,这可能会限制医疗保健提供者和患者的灵活性。
iPhone 上的低功耗模式:您需要了解的内容 当您的 iPhone 显示黄色电池图标时,并不一定表示您的设备有问题。实际上,这通常是 iOS 启用了低功耗模式的标志。此功能在每台 iPhone 和 iOS 设备上都可用,可与 Apple 的操作系统配合使用,以限制手机的某些功能并帮助延长电池寿命,然后再需要充电。当电池电量低于 20% 时,会弹出警报,让您可以选择是否打开低功耗模式。打开低功耗模式可以延长电池寿命,但也有一些缺点,例如性能降低、互联网速度变慢和应用程序后台活动受限。要关闭黄色电池图标,请转到 iPhone 的“设置”,访问“电池”部分,然后点击“低功耗模式”以将其禁用。您还可以选择何时启用或禁用此功能。低功耗模式最显着的影响之一是屏幕亮度降低。此外,由于后台活动有限,您可能会错过某些通知。如果您不介意这些限制,您可以始终保持低电量模式处于活动状态。这可以加快使用过程中的充电速度,并由于功耗降低而延长电池寿命。但是,如果您的 iPhone 电池图标在电量达到 100% 时仍为黄色,则可能是由意外或故障引起的。要检查电池健康状况,请访问“设置”中的“电池”部分,然后单击“电池健康和充电”。iPhone 上的优化电池充电模式通过了解用户的充电和使用模式来优化充电周期效率。此功能可提高效率并减少电池消耗。iPhone 上的低电量模式是一项很棒的功能,有助于延长电池寿命,使设备可以在原本会关机的情况下使用数小时。当电池图标变成黄色时,表示手机处于低电量模式,该模式会降低屏幕亮度、缩短自动锁定时间、限制刷新率并消除一些视觉效果。要关闭低电量模式,请转到“设置”>“电池”>“低电量模式”并将其关闭。或者,使用控制中心快速打开或关闭该功能。在低电量模式下,用户仍可执行大多数任务,但某些功能可能会受到限制或禁用以节省电池寿命。在低电量模式下为 iPhone 充电时,一旦电池电量达到 80%,该模式将自动关闭。低电量模式不会影响电话或短信,允许用户继续正常使用这些功能。当电池图标变成黄色时,这只是手机处于低电量模式的标志,可帮助用户节省电池寿命并延长 iPhone 的使用时间。低电量模式:电池寿命的游戏规则改变者 在 iOS 设置中打开低功耗模式以节省电池寿命并延长使用时间。此功能可让您的手机比平时保持更长时间,帮助您充分利用 iPhone 的电池。在以前的 iOS 版本中,您必须手动禁用后台应用刷新来解决电池问题。要打开低功耗模式,请按照以下步骤操作: 1. 转到“设置” 2. 向下滚动到“电池设置” 3. 向右翻转选项以启用低功耗模式 当电池电量低于 20% 时,您的设备将自动打开。黄色图标表示低功耗模式何时处于活动状态。启用后,它会一直开启,直到您的手机充满电或者您将其插入电源并充电到至少 80%。如果故意打开,黄色图标会一直保留,直到手机充满电。 升级后的电池问题 随着每次新的 iOS 更新,电池使用情况都会得到优化。但是,一些用户会遇到电池耗尽的问题,尤其是在旧款 iPhone 或 iPad 设备上。启用低功耗模式可以帮助缓解此问题。此外,您还可以检查特定于应用程序的设置以关闭后台刷新,这有助于节省电池寿命。要关闭低功耗模式,请按照与打开它相同的步骤操作:点击设置 > 电池 > 低功耗模式,然后通过向左翻转选项来禁用它。为什么要使用低功耗模式?低功耗模式在您需要手机电量有限的情况下非常有用。启用它可以显著延长使用时间,尤其是在使用蜂窝数据或拨打电话时。在低功耗模式下,如果不频繁使用,您的手机电池可以持续数小时。iPad 和 iPod 上也有此功能,激活它可带来与 iPhone 相同的好处。点击“设置”>“电池”>“低电量模式”,然后向左滑动选项将其禁用。为什么要使用低电量模式?低电量模式在需要手机电量有限的情况下非常有用。启用它可以大大延长使用时间,尤其是在使用蜂窝数据或拨打电话时。在低电量模式下,如果不频繁使用,手机电池可以持续数小时。iPad 和 iPod 上也有此功能,激活它可带来与 iPhone 相同的好处。点击“设置”>“电池”>“低电量模式”,然后向左滑动选项将其禁用。为什么要使用低电量模式?低电量模式在需要手机电量有限的情况下非常有用。启用它可以大大延长使用时间,尤其是在使用蜂窝数据或拨打电话时。在低电量模式下,如果不频繁使用,手机电池可以持续数小时。iPad 和 iPod 上也有此功能,激活它可带来与 iPhone 相同的好处。
涉及能源生产、储存、消费或运输的技术,该技术:(i) 最近才被开发、发现或学习到,或 (ii) 涉及生产力或价值的重大改进。新技术或显著改进的技术不能在商业市场上普遍使用。这意味着它不能在美国三个或三个以上用于相同一般用途的商业运营设施中使用,并且在每个设施中使用时间至少为五年。如果区域差异显著影响技术的部署,只要不超过六个项目采用相同或相似的技术,并且不超过两个使用相同或相似技术的项目位于美国同一地区,该技术仍可被视为创新技术。有关更多信息,请参阅指南。
识别电子,自旋和晶格自由度之间非平衡能量转移机制的微观性质对于理解超快现象(例如操纵飞秒时间表上的磁性)至关重要。在这里,我们使用时间和角度分辨的光发射光谱法可以超越经常使用的集合平均视图,从而在Quasiparticle温度下进行的非平衡动力学视图。我们显示的铁磁Ni表明,非平衡电子和自旋动力学表现出明显的电子动量变化,而磁交换相互作用仍然是各向同性的。这种高光是晶格介导的散射过程的影响,并为揭开旋转晶格角动量转移的仍然难以捉摸的显微镜机理打开了途径。