抽象图像着色是计算机视觉中的一个众所周知的问题。但是,由于任务的不良性质,图像着色本质上是具有挑战性的。尽管研究人员已经尝试了几次尝试使着色管道自动化,但由于缺乏调理,这些过程通常会产生不切实际的结果。在这项工作中,我们试图将文本描述与要着色的灰度图像一起集成为辅助条件,以提高着色过程的保真度。据我们所知,这是将文本条件纳入着色管道中的首次尝试之一。为此,已经提出了一个新颖的深网,该网络采用了两个输入(灰度图像和各自的编码文本描述),并尝试预测相关的颜色范围。由于各自的文本描述包含场景中存在的对象的颜色信息,因此文本编码有助于提高预测颜色的整体质量。已使用SSIM,PSNR,LPISP(分别达到0.917,23.27,0.223)评估了所提出的模型。这些定量指标表明,在大多数情况下,提出的方法优于SOTA技术。
更详细地,PCP建立在分裂的保形预测框架的基础上(Lei and Wasserman,2014; Papadopoulos等,2002)。它首先将观察到的数据D随机分配到初步的D PRE和校准集D Cal中。它具有三个阶段。(1)它适合条件生成模型Q(y | x)与初步数据d pre。(2)对于校准集d cal中的每个点(x i,y i),它生成了k独立的预期样本ˆ y x i = {ˆ y i i 1,····y ik},从拟合的模型q(y | x i)中。然后,它计算每个采样的预言与真实标签y i之间的差异。这些数量称为不符合分数,并测量生成模型的合适性。(3)最后,它计算并记录了不符合分数的(1 -α)经验分位数。分位数将用于构建预测集。
有条件许可的时间。现有设备的技术细节(输入瓦数、光合光子效率)必须在许可后 30 天内提交给办公室。对于不满足光合光子效率 1.9μmol/J 最低要求的设备,必须在有条件许可下生产的第一年结束前制定出向更高效照明设备的过渡计划(记录在案)。申请人必须有一个过渡到较低能耗系统的计划,如上文“a 部分”所述(光合光子效率不低于 1.9 μmol/J),并在有条件许可期结束后实现净零排放目标。该计划可以包括现场可再生能源生产、更高效的照明设备、办公室批准的碳补偿以及办公室批准的可证明的碳封存实践。
摘要 背景 尽管 T 细胞接合剂 (TCE) 针对血液系统恶性肿瘤取得了临床成功,但对实体瘤患者实现安全有效的剂量仍然具有挑战性。由于效力,正常组织上靶抗原的低水平表达可能无法容忍。为了克服这个问题,我们设计了一种新型条件活性 TCE 设计,称为 COBRA(条件双特异性重定向激活)。作为前体药物给药,COBRA 可与正常和肿瘤组织上的细胞表面抗原结合,但优先在肿瘤微环境中被激活。 方法 COBRA 被设计为靶向 EGFR、TAK-186。体外评估了预裂解 TAK-186 相对于不可裂解对照的效力。对患有表达一系列 EGFR 水平的已建立实体瘤的小鼠施用单次人类 T 细胞推注,并同时静脉内用 TAK-186 和相关对照治疗。我们评估了完整和裂解的 TAK-186 在血浆和肿瘤中的暴露情况。结果 TAK-186 显示出对表达抗原的肿瘤细胞的强效重定向 T 细胞杀伤力。体内疗效研究表明,已建立的实体肿瘤的消退依赖于肿瘤内的 COBRA 裂解。药代动力学研究表明 TAK-186 在循环中稳定,但一旦被激活就会迅速清除,因为其白蛋白结合半衰期延长域的丧失。结论所展示的研究支持 TAK-186 的进步,并支持寻求更多 COBRA TCE 用于治疗实体肿瘤。
摘要:前列腺癌死亡率在全球男性癌症死亡率中排名第二。对于精准治疗,尤其是对于已有耐药性前列腺癌的患者,迫切需要一种有效的药物筛选方法。基于细菌细胞培养和药物敏感性测试的概念,传统的癌症药物筛选方法是不够的。本文回顾并讨论了当前和更具创新性的癌细胞培养和体内肿瘤模型在药物筛选中用于潜在个性化抗癌治疗的应用。理想的筛选模型能够识别靶细胞的药物活性,类似于体内环境中发生的活性。基于这一原则,回顾并考虑了三种可用的前列腺癌细胞培养/肿瘤筛选模型。讨论了每种模型的培养条件、优缺点以及最佳利用这些模型的想法。第一种筛选模型使用来自患者癌细胞的条件重编程细胞。虽然这些细胞便于培养和使用,但它们可能具有与原始肿瘤细胞不同的标记和特征,并且