坦白说,我们感到震惊。套件零件缺失或无法正确组装。硬件通常装在大袋子里,未分类且无法识别。我们有一架超轻型飞机使用数百个堆叠的垫圈作为发动机支架。另一架使用塑料扎带防止点火线圈(由四节手电筒电池供电)落入螺旋桨弧中。另一架不使用安全带,而是使用脆弱的肩带作为约束系统。有些使用重量转移进行俯仰和滚转输入。其他人使用重量转移进行俯仰,使用自行车式车把进行滚转。您明白了:建造是一场噩梦,几乎所有飞机都存在严重的操控和设计问题。在我们驾驶的所有飞机中,有一个品牌比其他品牌更胜一筹。这些就是 Quicksilvers。虽然速度没有那么快,外观也没有那么性感
摘要:已合成2,5-双(4-吡啶基)-1,3,4- - 奥沙唑(4-Pox),并研究了1M HCl溶液中使用重量范围的1M HCl溶液中的碳钢(CS)作为有机耐受抑制剂的有机耐抑制剂。浓度并随着温度培养基的增加而降低。A mixture of physisorption and chemisorption is proposed for the corrosion inhibition mechanism and the process followed the kinetic/thermodynamic model of Langmuir in the temperature range from 303 to 343 K. The adsorption and kinetic parameters for CS/4-POX/1 M HCl system were calculated from experimental gravimetric data and the interpretation of the results are given.DFT计算,并应用于分析合成抑制剂与CS表面的相互作用。此外,还计算了福克(Fukui)指数,以确定最合理的亲核和亲电攻击位点。
•油漆:从历史上看,无机铅被用作油漆的颜料。铅基油漆(LBP)在1978年的《铅基油漆中毒法》中禁止使用LBP的制造和使用之前,已广泛用于住宅中。1978年之前建造的4套房屋可能会静止一些LBP。•汽油添加剂:有机铅化合物,四乙基和四甲基是汽车汽油的添加剂。在1996年1月,《清洁空气法》禁止使用汽车。但是,繁忙的道路附近的土壤可能仍会因过去使用而受到污染。1端的航空气体仍被某些飞机使用。5•农药:含有铅并广泛用于农场和果园的农药在1988年被禁止。1•消费产品:从历史上看,铅用于多种消费产品,包括餐具,银器,珠宝和家具。4,1978年,美国消费者产品安全委员会禁止使用重量为0.06%或更高的表面铅含量的家具,玩具和其他产品,以供儿童使用。 4该百分比在2009年降至0.009%。 6铅仍然可以用于塑料中,以使其软化并使其更灵活。 4铅也用于生产电池,弹药,金属合金和产品以及X射线屏蔽设备。 1•管道系统:1986年,对《安全饮用水法》进行了修改,要求在安装和修理1988年6月以后在建筑物中提供饮用水的任何公共供水系统或管道时,需要使用无铅焊料,通量,配件和管道。4,1978年,美国消费者产品安全委员会禁止使用重量为0.06%或更高的表面铅含量的家具,玩具和其他产品,以供儿童使用。4该百分比在2009年降至0.009%。6铅仍然可以用于塑料中,以使其软化并使其更灵活。4铅也用于生产电池,弹药,金属合金和产品以及X射线屏蔽设备。1•管道系统:1986年,对《安全饮用水法》进行了修改,要求在安装和修理1988年6月以后在建筑物中提供饮用水的任何公共供水系统或管道时,需要使用无铅焊料,通量,配件和管道。7种不可利用的水出口,例如用于工业用途,消防和灌溉的水,以及包括厕所,小便池和淋浴阀在内的特定产品。8在此之前,水服务线是由铅管制成的。
估计相机和激光雷达之间的相对姿势对于促进多代理系统中复杂的任务执行至关重要。尽管如此,当前的方法论遇到了两个主要局限性。首先,在跨模式特征提取中,它们通常采用单独的模态分支来从图像和点云中提取跨模式特征。此方法导致图像和点云的特征空间未对准,从而降低了建立对应关系的鲁棒性。第二,由于图像和点云之间的比例差异,不可避免地会遇到一到一对像素点的对应关系,这会误导姿势优化。为了应对这些挑战,我们通过学习从p ixel到p oint sim Imarlities(i2p ppsim)的基本对齐特征空间来提出一个名为i Mage-p oint云注册的框架。I2P PPSIM的中心是共享特征对齐模块(SFAM)。 它是在粗到精细体系结构下设计的,并使用重量共享网络来构建对齐特征空间。 受益于SFAM,I2P PPSIM可以有效地识别图像和点云之间的共同视图区域,并建立高可责任2D-3D对应关系。 此外,为了减轻一对一的对应问题,我们引入了一个相似性最大化策略,称为点最大。 此策略有效地过滤了异常值,从而确立了准确的2D-3D对应关系。 为了评估框架的功效,我们进行了有关Kitti Odometry和Oxford Robotcar的广泛实验。I2P PPSIM的中心是共享特征对齐模块(SFAM)。它是在粗到精细体系结构下设计的,并使用重量共享网络来构建对齐特征空间。受益于SFAM,I2P PPSIM可以有效地识别图像和点云之间的共同视图区域,并建立高可责任2D-3D对应关系。此外,为了减轻一对一的对应问题,我们引入了一个相似性最大化策略,称为点最大。此策略有效地过滤了异常值,从而确立了准确的2D-3D对应关系。为了评估框架的功效,我们进行了有关Kitti Odometry和Oxford Robotcar的广泛实验。结果证实了我们框架在改善图像到点云注册方面的有效性。为了使我们的结果可重现,源代码已在https://cslinzhang.github.io/i2p上发布。
摘要本研究研究了香蕉皮提取物作为A36钢的腐蚀抑制剂的有效性,以满足基础设施维持中可持续解决方案的需求。受控的腐蚀暴露测试是在用香蕉皮提取物处理的钢板上进行的,以不同的浓度(0%,5%,10%和15%)进行。表面特征。在整个测试中监测pH和电导率。使用重量表表征确定腐蚀速率。使用通用测试机进行了机械测试,包括应力 - 应变行为分析。结果表明,香蕉皮提取物可显着增强A36钢的耐腐蚀性。较高的抑制剂浓度,尤其是在15%的情况下,导致了机械性能的改善,例如最终应力,屈服应力,弹性,弹性和韧性的模量。SEM分析揭示了保护性化学吸附层的形成,而比色法表明随着抑制剂浓度的增加,可以更好地保存钢的表面特征。香蕉皮提取物是对民用基础设施腐蚀保护的有前途且可持续的替代方法。抑制剂的有效性随较高的浓度增加,从而防止腐蚀并增强钢的机械完整性。农业废物作为功能腐蚀抑制剂的利用促进了循环经济原则。通过重新利用香蕉皮,该研究有助于可持续的工程实践,
这项研究工作调查了快绿(C 37 H 34 N 2 O 10 S 3 Na 2)的潜力作为1M HCl中低碳钢腐蚀的抑制剂。使用重量法进行了研究。研究了浓度,浸入时间和温度对腐蚀速率的影响。发现腐蚀速率从3.50 x 10 -4降低至1.8 x 10 -4 g/cm 2/h,因为快绿的浓度从1 v/v增加到5%。抑制效率(IE%)因此在室温(30 O C)的24小时内从浓度范围内(1-5 v/v%)内增加到65%。随着在室温下的研究中,腐蚀速率也从2.44 x 10 -4增加到9.03 x 10 -4 g /cm 2 /h。吸附研究证实,Langmuir等温线是解释快绿色对低碳钢的吸附特征的最佳模型,其相关效率(R 2)为0.9847。与吸附,ΔG°AD相关的标准自由能计算为-25.78 kJmol -1。该值高达-20 kJmol -1,表明快速绿色分子上的碳钢表面吸附基本上是通过物理吸附。可以得出结论,抑制剂充当混合类型抑制剂,因为实验数据适合Langmuir模型,这是化学吸附的特征。关键字:腐蚀,碳钢,快绿色,吸附,物理学简介
摘要:木薯淀粉(C)胶卷,木薯淀粉/壳聚糖(C/CS)膜(C/CS)薄膜和木薯淀粉/壳聚糖/壳聚糖/柠檬草精油(C/CS/LEO)通过土壤埋葬20天的掩埋,使用重量损失,傅里叶传输式semmircred semrors semmose(FTIR)(FTIR)(FTIR)(FTIR)(FTIR)(ftir)。FTIR分析表明,官能团的去除与淀粉膜减肥相对应。从SEM进行的观察结果表明,电影在退化过程中的外观发生了变化。使用板数方法确定20天埋葬后的土壤微生物的数量。在第20天,对照样本显示的微生物计数明显少于所有处理。通过测量芽的长度,根新鲜的重量和射击新鲜重量,研究了淀粉膜对水疗(ipomoea aquatica)生长21天的影响。发现用C/CS和C/CS/LEO膜在土壤中种植的水经过21天,显示出相似的芽长,芽新鲜重量和根重量。然而,与在C膜和对照的土壤中生长的水经短相比,它明显更高(p <0.05)。该研究得出的结论是,释放的壳聚糖会影响水流的生长。
摘要:木薯淀粉(C)胶卷,木薯淀粉/壳聚糖(C/CS)膜(C/CS)薄膜和木薯淀粉/壳聚糖/壳聚糖/柠檬草精油(C/CS/LEO)通过土壤埋葬20天的掩埋,使用重量损失,傅里叶传输式semmircred semrors semmose(FTIR)(FTIR)(FTIR)(FTIR)(FTIR)(ftir)。FTIR分析表明,官能团的去除与淀粉膜减肥相对应。从SEM进行的观察结果表明,电影在退化过程中的外观发生了变化。使用板数方法确定20天埋葬后的土壤微生物的数量。在第20天,对照样本显示的微生物计数明显少于所有处理。通过测量芽的长度,根新鲜的重量和射击新鲜重量,研究了淀粉膜对水疗(ipomoea aquatica)生长21天的影响。发现用C/CS和C/CS/LEO膜在土壤中种植的水经过21天,显示出相似的芽长,芽新鲜重量和根重量。然而,与在C膜和对照的土壤中生长的水经短相比,它明显更高(p <0.05)。该研究得出的结论是,释放的壳聚糖会影响水流的生长。
减轻车辆重量可提高效率,从而影响运输能耗。燃料中 85% 以上的能量会因传动系统的热效率和机械效率低下而损失 1,而剩余的 12-15% 则用于克服阻碍前进运动的牵引力。2 在这些牵引力中,车辆重量对惯性(加速度)和滚动阻力的影响最大,而空气动力与质量关系不大。虽然质量与惯性和摩擦力之间的具体关系已广为人知,但要计算车辆重量减轻对能源效率的确切影响却很复杂,原因包括车队组合、质量分解(即减轻车身等部件的质量可使用重量更轻的系统,如刹车和悬架)以及车辆设计决策。一些研究已经使用实证技术探索了质量与燃料消耗之间的关系。对 2008 年款车型的整备质量与二氧化碳 (CO 2 ) 排放量(与燃油消耗相关的效率衡量指标)进行线性回归分析表明,车辆重量减轻 10% 与 CO 2 排放量减少 8% 相关。3 将整备质量和燃油消耗数据与车辆性能标准化技术相结合的模型表明,车辆重量减轻 10% 图 8.D.1 车辆轻质材料使用趋势8 轿车的燃油消耗减少 5.6%,轻型卡车的燃油消耗减少 6.3%。4 其他研究使用了更复杂(但仍以经验为基础)的模型。一个详细的基于物理的车辆性能模型,该模型是几个
挥发性腐蚀抑制剂 (VCI) 是为抑制湿气管道顶部腐蚀 (TLC) 而开发的,其注入方法可显著影响所需剂量,从而影响其效率。在本研究中,使用批量和连续注入方法比较了 VCI 的效率。使用 API 5l X65 碳钢级样品进行了一系列 TLC 测试,包括 5 天控制测试、7 天连续注入测试(每 3 天 200 ppm VCI)和 5 天批量注入测试(1000 ppm VCI)。使用重量损失法 (ASTM G1-03) 确定均匀腐蚀速率 (UCR)。使用无限聚焦显微镜 (IFM) 评估点蚀速率 (ASTM G1 46- 21),并使用扫描电子显微镜 (SEM) 分析表面形态特征。总体而言,由于 VCI 浓度剂量不足,两项测试都无法有效抑制腐蚀。然而,批量注入测试的效果优于连续注入测试(UCR:0.40 毫米/年 vs. 0.69 毫米/年;点蚀率:0.70 毫米/年 vs. 3.28 毫米/年),因为它只造成均匀腐蚀。连续注入测试中腐蚀样品的严重程度是由于 VCI 膜部分覆盖顶部试样表面,导致 VCI 局部破裂,从而导致高点蚀率。总之,在这种测试环境中,两种方法都需要更高浓度的 VCI 才能有效降低腐蚀率。