摘要 — 本教程关于正交时频空间 (OTFS) 调制的前两部分讨论了延迟多普勒 (DD) 域通信的基本原理以及一些先进的收发器设计技术。在本文中,我们将介绍一种基于 OTFS 的集成传感和通信 (ISAC) 系统,该系统被视为下一代无线通信的一项使能技术。特别是,我们说明了 OTFS-ISAC 系统的传感和通信模型。接下来,我们表明,得益于时不变的 DD 信道,传感参数可用于推断通信信道,从而实现高效的传输方案。由于这两种功能都是在同一个 DD 域中实现的,我们简要讨论了基于 OTFS 的 ISAC 系统的几个有希望的优势,这些优势尚未完全揭晓。最后,我们将重点介绍 OTFS 在未来无线网络中的一系列潜在应用。
毫无疑问,俄罗斯在乌克兰的战争已经成为了解未来无人机战争如何形成的最重要的冲突。本研究报告通过对乌克兰战场上经过实战检验的实践的全面分析,确定了九个关键要点。这些经验教训涵盖技术、理论和政策。报告的四个章节探讨了在各个功能和作战领域中提高无人机能力的主要机会。它们还强调了在开发、集成和部署新型无人系统过程中面临的持续挑战。但重要的是,无人机并不是取得战略胜利或打赢战争的灵丹妙药。因此,本报告努力管理对无人机能力的期望,同时强调人力资本的核心作用。事实上,当与新的使能技术相结合时,熟练的专家可以创造出有效的无人机性能。
过去几年,SDRD 项目在调整管理结构和投资组合方面取得了重大进展,使其与直接影响 NNSA 库存管理和全球安全任务以及战略伙伴关系和战略情报伙伴关系项目的领域更加紧密地结合起来。这种调整使该项目能够更加专注于七个对国家应对当前和未来核安全挑战至关重要的重点领域,即射线系统成像和分析、中子技术和测量、加速器束科学和目标相互作用、动态实验诊断、自主系统和传感使能技术、以用户为中心的远程测试和操作以及通信和计算。我们相信,这一变化将增强我们直接支持 NNSA 国防计划、国防核不扩散、核反恐和反扩散任务的能力,并有助于确保 NNSS 的 ST&E 进步的长期活力。
摘要 — 在下一代无线系统和网络的曙光中,大规模多输入多输出 (MIMO) 已被设想为使能技术之一。随着在 5G 及更高版本的应用中不断取得成功,大规模 MIMO 技术已显示出其优越性、可集成性和可扩展性。此外,近年来,大规模 MIMO 的几种演进特征和革命性趋势逐渐显现,有望重塑未来的 6G 无线系统和网络。具体而言,未来大规模 MIMO 系统的功能和性能将通过结合其他创新技术、架构和策略来实现和增强,例如智能全向表面 (IOS)/智能反射面 (IRS)、人工智能 (AI)、THz 通信、无蜂窝架构。此外,基于大规模 MIMO 的更多不同的垂直应用将会出现并蓬勃发展,例如无线定位和传感、车载通信、非地面通信、遥感、行星间通信。
该系隶属于那不勒斯费德里科二世大学,属于“基于 RNA 技术的国家基因治疗和药物中心”,由指导令 n 资助。 2022 年 6 月 17 日,MUR 的第 1035 号法令,利用国家复苏和复原力计划 (PNRR) 任务 4 - 部分 2 - 投资 1.4 的资源,“加强研究结构和创建某些关键使能技术的“国家研发冠军””,由欧盟资助 - NextGenerationEU,主题为 Spoke #8:RNA/DNA 递送平台,MUR 识别码 CN00000041 - CUP UNINA E63C22000940007,已于 2024 年 1 月 26 日发布招标,截止日期为 2024 年 1 月 31 日,涉及通过付费私法合同分配教学任务,以满足 PharmaTech 学院的需求,
我们认识到数字技术是使能技术。需要进一步发展和在经济和社会中采用这些技术,才能应对各种社会经济挑战,包括上述欧盟委员会的广泛目标。快速发展的数字化以研究和创新活动为基础,研究和开发数字技术的新应用。然而,“地平线欧洲”的目标不应仅限于开发新技术或逐步改进现有技术(例如,将新技术应用于新领域或部门)。如果欧盟的目标是成为一个数字化、有竞争力、有弹性、循环和气候中性的经济体,它必须投资于基础数字研究,以真正探索未知领域并找到既未预见也未设想的解决方案。例如,我们建议欧盟委员会维持甚至增加对人工智能 (AI) 网络中心的投资,以通过支持人工智能的前沿研究进一步挖掘其推动知识前沿的潜力。
本课程向学生介绍工程生物学/合成生物学,这是一个令人兴奋的领域,其中使用工程原理设计和修改活细胞以用于生物医学和工业应用,从活体治疗到以可持续方式生产高价值生物产品(如蜘蛛丝蛋白)的细胞工厂。在本课程中,您将学习设计合成基因回路的关键工程概念,以编程具有有用功能的生物系统,类似于我们编程电子设备的方式。您还将学习如何应用建模技术来研究基因回路的计算机性能,并了解包括 DNA 测序和合成以及基因组装/编辑在内的使能技术。最后,您将运用所学知识来展示来自 iGEM 的有趣项目,iGEM 是合成生物学领域首屈一指的国际学生竞赛!该模块将由 A/P POH Chueh Loo ( poh.chuehloo@nus.edu.sg ) 教授。
摘要 国家航天机构和私人实体计划在本世纪下半叶之前在月球和火星上建立前哨。 要实现这一目标,就必须准备好新的技术范式,以便在任务架构中实施。 在这里,我们提出合成生物学就是这样一种使能技术,它将与不断发展的生物经济协同作用,解决人类在地球内外面临的广泛挑战,因为他们将在后阿尔忒弥斯时代在月球上站稳脚跟,并继续探索和最终在火星上定居。 我们建议分阶段将合成生物学整合到太空任务中,并确定关键的双重用途突破,以扩大合成生物学对太空任务和陆地生物经济的影响。 最后,我们强调了国家航天机构和私营部门在未来几年采取的行动,这些行动对于利用合成生物学的潜力在地球外建立可持续的人类存在至关重要。
ADF 澳大利亚国防军 ADHQ 澳大利亚国防总部 ASW 反潜战 CIWS 近距武器系统 DE 决定性效果 DSTO 国防科学技术组织 EBO 基于效果的作战 EE 使能效果 EHF 超高频 ESM 电子支援措施 ET 使能技术或战术 FFG 阿德莱德级导弹护卫舰 FPS 功能性能规范 HQJOC 总部联合作战司令部 HSV 高速船 JTF 联合特遣部队 MEU 任务基本单位 OODA 观察、定位、决策、行动 RAN 澳大利亚皇家海军 R&D 研究与开发 SES 表面效应舰 SHF 超高频 SLOC 海上通信线 SM 潜艇 SURTASS 表面拖曳阵列声纳系统 SWATH 小型水面双体船 UAV 无人驾驶飞行器 UUV 无人驾驶水下航行器 US 美国 USN 美国海军 WWII 第二次世界大战
ADF 澳大利亚国防军 ADHQ 澳大利亚国防总部 ASW 反潜战 CIWS 近距武器系统 DE 决定性效果 DSTO 国防科学技术组织 EBO 基于效果的作战 EE 使能效果 EHF 超高频 ESM 电子支援措施 ET 使能技术或战术 FFG 阿德莱德级导弹护卫舰 FPS 功能性能规范 HQJOC 总部联合作战司令部 HSV 高速船 JTF 联合特遣部队 MEU 任务核心单位 OODA 观察、定位、决策、行动 RAN 澳大利亚皇家海军 R&D 研究与开发 SES 表面效应舰 SHF 超高频 SLOC 海上通信线 SM 潜艇 SURTASS 表面拖曳阵列声纳系统 SWATH 小型水面双体船 UAV 无人驾驶飞行器 UUV 无人驾驶水下航行器 US 美国 USN 美国海军 WWII 第二次世界大战