在供应器型有机光电器件中,例如有机太阳能电池(OPV)和Expiplex型有机光二极管(EOLED),电荷转移(CT)机制是导致库仑绑定的电荷对(Geginate对(Geginate Pair)的主要过程,它们要么将其分散到自由载体中,要么将其降低到自由载体或放松身心。广泛的理论和实验工作以Onsager计算为基础,以确定初始电子孔距离,并研究电场对Geminate对分离和自由载体的产生的影响。在这里,我们讨论了Reveres Onsager过程,随着E-H距离的降低,场诱导蓝色光谱移动。求解场效应库仑势能方程,我们能够解释观察到的蓝色光谱移位并确定设备结构中的E-H距离,库仑势能和电场分布。该过程提供了对捐赠者接口处的外部重组的基本理解。
助理教授史蒂文·约翰斯顿(Steven Johnston)和他的同事发现,鉴于正确的环境,弱者超导体可以创建记录。这些努力的结果于11月13日在题为“界面模式耦合作为srtio 3中T C增强的起源的自然信中发表。”超导材料没有电势。在看似无限的应用中,当前结果的效率效率:“流动”列车,紧凑型电缆和生物磁技术的超导磁铁只是少数示例。超导性的起源方式并不完全简单,这与电子的行为方式有关。通常,电子互相排斥。然而,有些情况诱使他们配对,清除所有阻力并沿着目前的不受阻碍。这种现象有所不同:有低能(常规)超导体,其中电阻率在39 kelvin或更低的过渡温度下消失。在这里,电子配对是由声子引起的:材料类似晶格的结构中的振动(通常被描述为丛林健身房)。在1980年代中期,高温(或高t c)供应器到达,他们显示出过渡温度的增加。然而,他们如何在第一个地方成为超导,这是一个谜,因为一些思想流派排除了候选人。这是使本文字母更有趣的一部分。