丹麦能源署和丹麦输电系统运营商 Energinet 发布了包含能源工厂技术数据的目录。当前目录包括多项技术的更新,这些技术用 2013 年 10 月、2014 年 1 月和 2015 年 3 月发布的更新内容取代了 2012 年 5 月发布的上一目录中的相应章节。目的是更新上一目录中的所有技术,并在此目录中展示。此外,如果数据发生重大变化或发现错误,目录将随着技术的发展而不断更新。所有更新都将列在上一页的修订表中,并与相关章节一起列出,并且始终可以在丹麦能源署的网站上找到最新更新的版本。
术语 定义 空气源热泵 空气源热泵从室外空气中提取能量,然后将该能量转化为热量,供给建筑物。其通过提供生活热水和中央供暖系统进行空间供暖来实现。 干式空间供暖系统 干式空间供暖系统的工作原理是完全通过对流加热,因为加热器内的热金属元件会使在房间内循环的空气变暖。 湿式空间供暖系统 湿式空间供暖系统的工作原理是让热水通过连接到整个建筑物的发射器的管道系统循环。 直接热水 直接热水系统将总管直接连接到建筑物的水龙头,在需要时提供即时热水。 间接热水 间接热水系统是通过圆筒提供生活热水,其中储存的水由圆筒内的热交换器加热。
热泵热水器的核心是制冷剂与水的热交换器,其性能对系统的整体性能至关重要。Temperzone 的 ThermoShell ® 热交换器设计用于在低水流量下极其高效地运行。这使得需要较低水流量的 Temperzone 直列系统能够提供卓越的性能。其他热交换器设计很容易随着时间的推移而结垢,从而降低性能并大大缩短系统的使用寿命。Temperzone 的 ThermoShell ® 消除了这种结垢风险,并保证年复一年地保持相同的性能。
•通过城市通信渠道共享信息,以确保公众和媒体了解热警告状态以及通过热缓解网络的凉爽空间的可用性。这可能包括通过新闻发布和/或城市的网站和社交媒体帐户共享信息,通常与其他DAC(包括TPH)合作。•与合作伙伴合作审查和更新炎热的天气教育资源(例如,健康影响,弱势群体)。此信息将继续在线提供,并将在整个夏季,尤其是在热警告期间通过社交媒体共享。
考虑到这一策略,我们再次审查了技术,选择安装 VRF 热回收系统。该系统是模块化的,因此当我们更新和翻新建筑物的其他部分时,可以将它们添加到新的供暖系统中。所选的制造商是唯一一家提供控制所有风机盘管的单个分支控制箱的制造商。这允许每个单元同时加热和冷却,允许通过两个管道将主管道安装到分支控制箱。所有其他热回收系统制造商都需要额外的管道(三管系统)和每个室内单元的单独分支控制箱,以同时提供加热和冷却。该系统还允许一个模块化室外机用于所有 15 个室内机。
我们致力于建立国家公共能源机构,以加速家庭和建筑物供暖和能源使用方式的变革。为实现这一目标,该机构的职责是提高公众的理解和认识,协调投资的实施,协调国家、地区和地方政府实施供热脱碳和能源效率推广,并与公共、私人和第三部门合作伙伴密切合作。我们将首先将该机构作为一个虚拟机构建立,然后在 2025 年 9 月之前过渡到专门机构。我们已经开始了一段时间的证据收集工作,以支持该机构范围和职责的发展。
区域供热是世界上许多城市的主要能源基础设施,对温室气体排放贡献巨大。区域供热脱碳是实现碳中和社会的重要一步,需要进行重大的社会技术变革。本文以涉及社会技术重构的可持续发展转型文献为基础,研究了实施基于生物质焚烧最小化和全面淘汰化石燃料的低碳区域供热系统的障碍。从实证角度来看,该研究依赖于广泛的利益相关者分析,涉及 44 个组织,代表技术提供商、能源公司、行业组织、政策制定者、地方当局和研究人员。结果表明,虽然几个利益相关者群体可以在关键问题上达成一致,例如需要支持某些技术领域和生物质锁定的危险,但政策制定者、新进入者公司和建筑业主之间存在需要消除的障碍的分歧。城市被认为是实施拟议的低碳区域供热概念的重要参与者。然而,他们应该鼓励建筑业主参与需求响应计划、分散的可再生能源生产和重新设计当地电力网络以支持区域供热电气化。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
重力周转设施吸收器内部的升温使太阳能介质比较冷的回流管线内的介质更轻。此过程产生上升压力,迫使收集器液体进入储存器。在这里,介质释放热量,并在重量增加后下沉回吸收器。只要吸收器的温度高于储存器的温度,这种新陈代谢就可以自给自足。如果收集器和热水箱可以布置在允许连接管线的梯度比大于 3% 的位置,则根本不需要泵或调节。由于其重量轻且管线短,这种设施最适合小型单位(例如单户住宅),并且可以安装在屋顶上或屋顶下。它结构紧凑,非常经济。这种类型的系统在地中海地区很受欢迎,尤其是在这些国家常见的平屋顶上。气候条件允许简单地使用饮用水而无需额外的防冻保护,这一事实进一步促进了该系统在该地区受欢迎程度。 3.3 太阳能集热器 3.3.1 吸收器和集热器 吸收器是太阳能电池板的最重要部件,或多或少决定了太阳能电池板的容量。吸收器的效率取决于以下标准: - 最大程度吸收太阳辐射 选择性涂层 - 最小热量散发(参见第 3.1 章) - 良好地将热量传输到导热液体(铜、铝、钢) - 加热时间短(液体体积小,最大 1 l/m²) - 导热液体的流动阻力小(泵容量尽可能低) - 耐腐蚀(尤其是铜、优质钢、用于游泳池吸收器的合成材料) - 耐高温和耐压(温度超过 200°C 且压力超过 6 bar,使用金属)
考虑到各种脱碳供暖解决方案,到 2050 年,支出可能会是这样的。该图表明,从整体能源支出来看,ASHP 的吸引力不会大幅下降。它还表明,与 2020 年相比,供暖成本的任何潜在增加至少可以部分地被能源支出中其他部分的成本降低和能源效率的节约所抵消。这并不意味着个人消费者或企业的供暖(和能源支出)成本不会发生变化。政策可能在减轻任何潜在成本增加方面发挥关键作用,特别是在可能影响易受能源成本增加影响的人口或行业的情况下(因此可能反映在该州的经济中)。
摘要 本文提出了一种稳健的投资和运营模型,以满足与配电系统相连的微电网 (MG) 的电力和热能需求。优化算法决定了热电联产 (CHP)、锅炉、光伏发电和电池储能系统 (BESS) 的最佳投资和运营。对于 BESS,该算法估计最佳储能容量 (MWh) 以及最大每小时输送容量 (MW)。非线性和非凹面热率图由混合整数线性模型重新构建,以获得易于处理和精确的模型。该模型考虑了某些参数的不确定性,使用概率密度函数 (pdf) 来描绘其行为。因此,该问题已使用随机规划方法建模,其目标函数是年度运营成本的预期值。使用真实案例测试该模型,其中两个相邻的消费者共享电力和热能设施,以根据天然气价格情景将总体成本降至最低,最高可达 17%。结果证明了采用不同技术的好处以及所有技术共同运作的协同作用。