提出明确的目标(例如到 2050 年实现碳中和),并制定分目标和时间表(例如 2025 年、2035 年); 制定实现这些目标的路线图; 由公民、技术专家、政治家和其他利益相关者共同制定,以使所制定的战略具有社会合法性; 指出可持续供热技术和解决方案的技术经济可行性,并描述这些技术在什么条件下是可行的; 不要孤立存在,而要嵌入其他地方政策(例如气候计划、空间规划、建筑法规); 在区域、国家和国际(即欧盟)层面建立并融入供热政策; 在区域和建筑层面支持和指导可持续供热项目; 不要简单地将成本分配给其他领域(例如空气质量、能源贫困); 根据当地情况进行定制; 符合法律和机构要求。
空间供暖的能源使用占能源终端使用总量的很大一部分,供暖系统可以在使用时间上提供一定的灵活性,这对于未来的能源系统保持供需平衡非常重要。本研究采用技术经济、综合需求供应优化模型,研究使用建筑物需求侧灵活性(允许室内温度偏差(高于或低于设定点))和供应侧灵活性(应用热能存储 (TES))对区域供热 (DH) 系统运行的综合影响。结果表明,室内温度升高的潜力,即需求响应 (DR),集中在多户和非住宅建筑(时间常数高的重型建筑),而温度降低的潜力,即运行节能,在单户建筑(轻型建筑)中得到更大程度的利用。同样明显的是,在存在供应侧 TES 的情况下,DR 的价值会降低。我们表明,从供热系统的角度来看,同时应用需求侧灵活性和集中式 TES 是互补的,因为它可以使建筑物的总空间供热负荷最低,并且区域供热系统的运行成本最低。
效果并开发技术(总)和更现实(净)潜力,从而可以更准确地分析有吸引力的能源效率改进。这种分析是新颖的,因为底层模型依赖于建筑特征而不是合成原型,这可能导致多样性的丧失(例如成本和潜力的变化),从而丢弃具有成本效益的潜力。该分析还调查了结果对折现率假设的敏感性,并重点关注将最终用户暴露于不同的区域供热关税以及随之而来的总成本效益投资的影响。结果表明,在考虑的不同建筑存量中,成本效益能源效率改进在规模和类型上差异很大。关于区域供热关税,当所有成本组成部分都是可变的时,总成本效益潜力会大大增加,特定的能源效率改进在不同的建筑物类别中分布不同,并且成本组成部分提供不同的投资激励。因此,在评估建筑能效改进方面具有经济吸引力的投资时,异质性和不同的关税政策确实很重要。
大自然是我们的生命支持系统。世界自然基金会印度分会致力于保护和恢复大自然,造福人类和地球,支持创造稳定气候和防止野生动植物灭绝的努力。喜马拉雅地区因其生态重要性而成为世界自然基金会印度分会的重点关注区域。喜马拉雅山脉是极地以外最重要的积雪集中地。作为国家气候变化行动计划 (NAPCC) 的一部分,印度政府启动了维护喜马拉雅生态系统国家使命 (NMSHE)。该计划涉及喜马拉雅冰川及其相关水文后果、生物多样性保护、保护传统知识社会及其生计以及规划喜马拉雅地区的长期可持续发展等重要问题。
执行摘要:氢气和基于 H 2 的分散供热的作用 政策制定者、商界领袖和科学家认为,氢气是清洁能源转型成功的重要能源载体。最近的许多研究调查了氢气的应用领域,提出了广泛引入氢技术的各种路线图。近年来的能源政策辩论往往集中在如何使能源系统可持续,同时必须长期依赖太阳能和风能这两种主要的可再生能源。在这场讨论中,人们达成了广泛的共识,即只要技术上可行且方便,就应最大限度地直接使用电力。就建筑物供暖而言,现在很明显,热泵从环境中提取的热量是其消耗的电能的三倍,由于 PtG 的转换损耗大(能量经过多个步骤从电能转化为氢气,从氢气转化为甲烷,然后从甲烷转化为热能),因此比基于电转气 (PtG) 的合成燃料效率高得多 [3]。近年来进行的科学研究证实了热泵和 PtG 之间明显的效率差异。有关这一主题的最全面的研究题为“建筑行业效率:能源转型的关键组成部分”,由柏林智库 Agora Energiewende 发表 [4]。在这项研究中,我们评估了有关氢气供应、需求和基础设施的最新研究,并进行了我们自己的分析。在以下章节中,我们将介绍关于氢气在能源系统转型中的作用的研究结果,特别是在建筑领域。A. 氢气的一般作用:
考虑到各种脱碳供暖解决方案,到 2050 年,支出可能会是这样的。该图表明,从整体能源支出来看,ASHP 的吸引力不会大幅下降。它还表明,与 2020 年相比,供暖成本的任何潜在增加至少可以部分地被能源支出中其他部分的成本降低和能源效率的节约所抵消。这并不意味着个人消费者或企业的供暖(和能源支出)成本不会发生变化。政策可能在减轻任何潜在成本增加方面发挥关键作用,特别是在可能影响易受能源成本增加影响的人口或行业的情况下(因此可能反映在该州的经济中)。
欧盟一半的能源消耗用于供暖和制冷(见图 1),三分之一用于空间供暖、制冷和热水。不幸的是,大部分能源仍然来自化石燃料(见图 2)。可再生能源在供暖和制冷领域的份额在 13% 到 20% 之间,具体取决于电力和区域供暖和制冷领域的可再生能源份额。在欧洲,9% 的供暖和制冷来自 DHC,但各国 DHC 份额差异很大。为了大幅减少化石燃料的使用,欧盟委员会于 2016 年初通过了一项供暖和制冷战略,作为能源联盟一揽子计划的一部分。大量活动和项目已经并将继续通过这一新战略获得资助。
丹麦能源署和丹麦输电系统运营商 Energinet 发布了包含能源工厂技术数据的目录。当前目录包括多项技术的更新,这些技术用 2013 年 10 月、2014 年 1 月和 2015 年 3 月发布的更新内容取代了 2012 年 5 月发布的上一目录中的相应章节。目的是更新上一目录中的所有技术,并在此目录中展示。此外,如果数据发生重大变化或发现错误,目录将随着技术的发展而不断更新。所有更新都将列在上一页的修订表中,并与相关章节一起列出,并且始终可以在丹麦能源署的网站上找到最新更新的版本。
[1] Østergaard PA、Lund H、Mathiesen BV。智能能源系统和第四代区域供热。Int J Sustain Energy Plan Manag 2016;10:1-2。https://doi.org/10.5278/ijsepm.2016.10.1。[2] Østergaard PA、Lund H。智能区域供热和电气化。Int J Sustain Energy Plan Manag 2017;12。https://doi. org/10.5278/ijsepm.2017.12.1。[3] Østergaard PA、Lund H。编辑 - 智能区域供热和能源系统分析。Int J Sustain Energy Plan Manag 2017;13。https://doi.org/10.5278/ijsepm.2017.13.1。 [4] Østergaard PA、Lund H、Mathiesen BV。社论 – 智能能源系统和第四代区域供热系统。Int J Sustain Energy Plan Manag 2018;16:1-2。https://doi. org/10.5278/ijsepm.2018.16.1。[5] Østergaard PA、Lund H、Mathiesen BV。第四代区域供热的发展。Int J Sustain Energy Plan Manag 2019;20。https://doi.org/10.5278/ijsepm.2019.20.1。
8 Connolly, D.、Hansen, K.、Drysdale, D.、Lund, H.、Van Mathiesen, B.、Werner, S. 等 (2015)。加强供暖和制冷计划以量化提高欧盟成员国能源效率的影响:将欧洲供热路线图方法论转化为成员国层面。(工作包 2。主要报告:执行摘要。)比利时布鲁塞尔:Stratego 项目。检索自 https://www.euroheat.org/wp-content/uploads/2016/04/WP2-Main-Report.pdf